November 1992 h Report No. STAN-CS-92-1459

AD 8 49 Also numbered as C SL-TR-Q;’:.,:“.‘Z
WA \\\\\ \\\\\\ A
Exploiting the Memory Hierarchy in Sequential and
Parallel Sparse Cholesky Factorization
by
Edward Rothberg
2

4
o
sy |

.
-
(..‘ % S

Department of Computer Science

Stanford University
Stanford, California 94305

T 3-07512
93 4 02 004 \\\9\\\\\\\\\\\“\\\\\\\\‘\\\.\\\\\\\\\\“

REPORT DOCUMENTATION PAGE form Approved

OME No. 07040188

Sublic reporong Burden 1or the ot eform, " M 30 Sveragu | NOW SUY reuRiIg. Achuling erm— oy
govharng ane 9 The dota 36 COMPMDIG S8 riverwng (COMITIION Of (afor preshpiondoe Yo Spiieapatosmispy Mot Joan T o)
mﬂme&me,lo‘“ 9 100 Sorvecin. Owacsorses for e Cuerasom :',.‘\;:"“'“
Dovee Highwey. Suie 1208, ArMAguin, VA 122624302, 508 10 The OFfice 0f MpRaqueent ong BUiget. # Hnorwors Athasion Fapect £ 7048 1881, Washingeor, OC 20303 3 revtoraen

7. AGENCY USE ONLY (Leave blank)] 3. REPORT OATE 3. REPORT TYPE AND DATIS COVIRID

Y Yy

4. TITLE AND SUBTITLE 3. FUNOING NUMSERS
Exploiting the Memory Hierarchy in Sequential and
Parallel Sparse Cholesky Factorization NOO0O39-91-0-01 38

6. AUTHOR(S)
Edward Rothberg

l-7.. PERFORMING ORGANIZATION NAME(S) AND ADORESS{ES) S. PERFORMING OAGANUATION
REPORT NUMEELR
Stanford University CSL-TR-92-5%5

Computer Science Dept. & Llectrical knpinecerine
Stanford, CA 94305

9. SPONSORING / MONITORING AGENCY NAM!(S‘ AND ADORESS{ES) 10. SPONSORING / MONITORING
AGINCY REPORT NUMSER

DARPA
Arlington, VA

0 S Y
11. SUPPLEMENTARY NOTES

b e e~ e
122, OISTRIBUTION / AVAILABILITY STATEMENT 12b. OISTRIBUTION COOE
unlimited

13. ABSTRACT (Maximum 200 wordt)

Cholesky factorization of large sparse matrices is an extremely important computalion, ansing n a wide range of domains including
linear programming, finite element analysis. and circuit symulation. This thesis investigates crucial 1ssues for obtaining hgh performance
tor this computation on sequential and parallel machines with huerarchical memory systems The thesis hegins by provading the tirst
tharough analysis of the nteraction hetween sequential sparse Cholesky factonzation methads and memory hierarchiey W dook at
popular existing methods and find that they produce relanvely poar memory hicrarchy performance. The methods are extended, vang
blocking technigues, to reose data in the fast levels of the memory hierarchy. This aincreased reuse s shown to provide a thiee-lold
speedup over popular existing approaches (¢.g.. SPARSPAK)Y on modem workstations,

The thesis then considers the use of blocking techniques n paraliel sparse factonzation. We irst descnibe paratiel methods we have
developed that are natural extensions of the sequential approach described ahove. These methods distnibute panels (xets of contiguous
columns with nearly 1dentical non-zero structures) among the processors. The thesis shows that for small parallel machines, the tesplung
methods again produce substantial performance improvements over exising methods. A framework sy provided for understanding the
performance of these methods. and also for understanding the hmitations inherent in them Using this framework, the thesis shows
that panel methods are inappropriate for large-scale parallel machines because they do not expose enough concunency The thesis
then considers rectangular block methods, where the sparse matrix 1s split both vertically and honzontatly. These methods address the
concurrency problems of panel methods. but they also introduce a number of complications. Primary among these are ssues ol choosing
blocks that can be manipulated efficiently and structuning a parallel computation in terms of these blocks. The thesis descnbes solutions
1o these problems and presents performance resulis from an efficient block method implementation

14. SUBIECT TERMS 15. NUMBER OF PAGES
Hierarchical-memory machines, sparse cholesky factorization, 153
parallel processing 16. PUCE CODEL

e e —— e e T =T W~ 7Y T T
17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ARSTRACY
Of RIPORT OF THIS PAGE Of ABSTRACT

unclassified unclassified unclassified

EXPLOITING THE MEMORY HIERARCHY IN
SEQUENTIAL AND PARALLEL SPARSE
CHOLESKY FACTORIZATION

Edward Rothberg

Technical Report No. CSL-TR-92-555

November 1992

DTIC QUALLL & bavwl e e h

s e e e e S Ao 2L

B s i e

PSRy X {
Er“&i\i ! B ’
U : ;

J’ 3

By -
Dol i
. i
[i
: . i

Dist

This thesis has been supported by DARPA contract N00039-91-C-0138.
Author also acknowledges support from an Office of Naval Research graduate

fellowship.

Copyright © 1992
by
Edward Rothberg

EXPLOITING THE MEMORY HIERARCHY IN SEQUENTIAL AND
PARALLEL SPARSE CHOLESKY FACTORIZATION

Edward Rothberg
Technical Report: CSL-TR-92.55§
November 1992

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305-4055

Abstract

Cholesky factorization of large sparse positive definite matrices is an extremely important computation, arising in
a wide range of domains including linear programming, finite element analysis, and circuit simulaton. This
thesis focuses on crucial issues for obtaining high performance for this computation on sequential and paralle!
machines with hierarchical memory systems. Hierarchical memory machines offer the potential 1o perform this
computation both quickly and cost-effectvely. By structuring memory in the form of a hierarchy, with a small,
high-speed cache near the processor and larger but slower levels further away, these machines allow
appropriately-structured computations to behave as if all their data were stored in very fast memory. The thesis
investigates how well sequential and parallel Cholesky factorization algorithms can make use of a hierarchical
Memory organization.

The thesis begins by providing the first thorough analysis of the interaction between sequential sparse Cholesky
factorization methods and memory hierarchies. We look at popular existing methods and find that they produce
relatively poor memory hicrarchy performance. The methods are extended, using blocking techniques, to reuse
data in the fast levels of the memory hierarchy. This increased reuse is shown to provide roughly a factor of
three increase in performance on modern workstation-class machines. The primary contribution of this work is
its investigation and quantification of the specific factors that affect sparse Cholesky performance on hierarchical
memory machines. This work also presents and compares a disparate set of factorization methods within a
consistent framework, thus isolating and identifying the important similarities and differences between the
methods and unifying a large body of previously uncomparable work.

The thesis then studies the use of blocking techniques for parallel sparse Cholesky factorization. The sequential
methods are quite easily extended to small-scale multiprocessors (2-16 processors), producing parallel methods
that make excellent use of memory hierarchies. Data reuse is achieved by working with sets of contiguous
columns, or panels. However, important scalability questions arise concerning the use of panel-onented
methods on larger parallel machines. At issue is whether panels can be made large enough to provide significant
data reuse while at the same time providing enough concurrency to allow a large number of processors to be
used effectively. The thesis uses a parallel performance model to understand the performance of these methods
and to show that such methods are in fact inappropriate for larger hierarchical memory muitiprocessors.

The thesis then proposes an alternative parallel factorization approach that manipulates rectangular sub-blocks of
the matrix. This block-oriented approach is found to overcome the scalability limitations of the panel-onented
methods. However, several issues complicate its implementation. Primary among these are issues of choosing
blocks in a sparse matrix that can be manipulated efficiently and structuring a parallel computation in terms of
these blocks. The thesis presents solutions to these problems and investigates the paraliel performance of the
resulting methods. The contributions of this work come both from its theoretical foundation for understanding
the factors that limit the scalability of panel- and block-oriented methods on hierarchical memory
multiprocessors, and from its investigation of practical issues related to the implementation of efficient parallel
factorization methods.

Key Words and Phrases: Hierarchical-memory machines, sparse Cholesky factorization, parallel
processing, sparse matrices.

This report is also referenced in Computer Science Department as STAN-CS-92-1459.

i

Acknowledgements

I would like to thank everyone who has helped me during my vears in graduate school In particufar.
I would like to thank my principal advisor. Anoop Gupta. His insightful comments and sermiugis
boundless enthusiasm for the field were an enormous help and were greatly appreciated | wauld
also like to thank John Hennessy and Gene Golub for serving on my reading commuttee. | wauld
also hike to thank the members of the DASH group. particularly Aaron Goldberg, JP Singh and
Michaei Wolf, who have been a great pleasure to work with. Finally. | would hike to thank my wife
Jessica for her constant support.

I would also like to acknowledge support from an Office of Naval Research graduate fellowship
and from DARPA grants NQOG14-87-K-0828 and N00039-81-C-0138

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Trends in Computer Architecture
1.2 Algorithm Design for Hierarchical Memory Organizations
1.3 Organization of Thesis and Summary of Results

2 Sparse Cholesky Factorization
2.1 Matching Non-Zeroes
2.2 Elimination Tree e ,

2.3 The Multifrontal Method
2.4 Supernodes L

2.5 Generalized Factorization

3 Sequential Sparse Cholesky Factorization
3.1 introduction

3.2 Experimental Environment

3.3 Sparse Cholesky Methods

3.3.1 Assorted Details

3.3.2 Column-column Methods o
3.3.3 Supernode-column Methods L
3.34 Column-supernode Methods
3.3.5 Supernode-pair Methods e

3.3.6 Supernode-supernode Methods ==

3.3.7 Supernode-matrix Methods

338 Summary

3.4 C(Cache Parameters

i

341 LineSize
342 Set-Associativity .
3.43 Cache Size .
3.5 Alternative Blocking Strategies . . .
3.5.1 The Benefits of Blocking . .
3.5.2 The Impact of Cache Interference .
353 Advantages and Disadvantage of Square-Block Methods
3.6 Discussion
3.6.1 Square-Block Mcihods: Performance lmprovement on Benchmark Machines
3.6.2 Improving Multifrontal Performance
3.6.3 Choice of Primitives
3.6.4 Performance Robustness
3.7 Related Work and Contributions

3.8 Conclusions

Evaluation Environment for Multiprocessors

4.1 lIntroduction oo .

4.2 The Stanford DASH multiprocessor

4.3 Performance Model00
4.3.1 Computation Costs
432 Cache Miss Counts
4.3.3 Communication Costs

4.4 Benchmark Matrices

Parallel Panel Methods
5.1 The Panel Multifrontai Method

5.1.1 General Structure

5.1.2 Multifrontal Method . .

5.1.3 Parallel Multifrontal Example
5.1.4 Implementation Details . = =

5.1.5 Distnibuting the Matrix Among Processors

5.1.6 Proportional Mapping

5.1.7 Papels

5.1.8 Supernode Amalgamation

5.2 Parallel Performance . .

5.3 Performance Bounds .
5.3.1 Maximum Load- Load Balance and Lvad Efficiency
5.3.2 Critical Path

Vi

Wil

-
-
6
L4
i
-

5.3.3 Performance Compared to Bounds
5.4 Improving Performance
5.5 Panel Size Selection
56 DASH Performance
Contributions .

5.8 Conclusions . .

Dense Block-Oriented Factorization
6.1 Introduction
6.2 Block-Oriented Factorization
6.3 Parallel Factorization Algorithms
6.3.1 Block Mapping . .
6.3.2 Destination-computes method
6.3.3 Source-computes method
6.3.4 Summary
6.4 Predicting Performance
6.5 Model Verification

6.6 Conclusions . .

Sparse Block-Oriented Factorization
7.1 Introduction
7.2 Block Formulation

7.2.4 Block Decomposition . .

-}

2.2 Structure of the Block Factonzation (‘omputation

|

2.3 Pecformance of Block Factorization

-1

2.4 1Improving Performance
7.2.5 Block Decomposition Summary . .
7.3 Parallel Block Method =~~~ . = |

7.3.1 Parallel Factonzation Organization .

7.3.2 Block Mapping for Reduced Communication

7.3.3 Enhancement: Domains

74 Evaluation . . .
7.4} Small Paralle]l Machines
742 Moderately Paratlel Machines
743 Massively-Paralle] Machines
744 Summary

75 Ihscussion

76 Future Work

tigy
Oax
oy
ju}

e

7 Related Work and Contnibutions

-1

7.2 Conclusions

Conclusions

Vin

List of Tables

-1

10

11
12

13

14

Benchmark matrices. L

Benchmark matrix statistics.
Performance of column-column methods on DECstation 3100 and IBM RS/6000
Model 320.

Performance of supernode-column methods on DECstation 3100 and IBM RS/GOO()
Model 320. v
Mean performance numbers on DECstation 3100 and [BM RS/6060 Model 320.
References and cache musses for supernode-column methods, 64K cache with 4-byvte
cache limes.
Mcan memory references and cache misses per floating-point operation. References
are to 4-byte words. Cache is 64 KBytes with 4-byte lines. .

Performance of supernode-pair methods on DECstation 3100 and IBM RS/6()00 Model
3200 .0

Mean performance numbers on DECstation 3100 and 1BM RS/6000 Model 320
Mean memory references and cache misses per floating-point operation. References
are to 4-byte words. Cache is (i KBytes with 4-byte lines.
Performance of supernode-supernode methods on DECstation 3100 and IBM RS/6000
Model 320.
References and cache misses for supernode-supernode methods, 64K cache with $-byte
cache lines.

Mean performance numbers on DECstation 3100 and 1BM RS/()OOO Model 320

Mean memory referrnces and cache misses per floating-point operation. References

are to 4-byte words. C'ache 15 64 KBytes with 4-byte lines.

1%

1%

[

o

[N
-1

[
-1

29

34

33
34

35

39

18

19
20

21

22

23

24

25

26

27

28

29

30

Performance of supernode-matrix methods on DECstatuon 3100 and IBM RS/65000
Model 320. . . .

References arnd cache niisses for supernode-matrix methods. 84K cache with $-byvte
cache lines.

Mean performance numbers on DECstation 3100 and 1BM RS/8000 Madel 320
Mean memory references and cache misses per floating-point operation References
are to 4-byte words. (‘ache 1s 64 KBytes with 4-byte fines.

Effect of increasing cache line size from 4 bytes to 64 bytes. for 64 KByte cache
Memory system traffic is measured in 4-byte words.

Effect of increasing cache set-associativity from direct-mapped to 4-way set-associative
Cache is 64 KBytes an line size is 64 bytes. Traffic i1s measured in 4-byte words
Performance of square-block uncopied methods on DECstation 3100 and IBM RS/8600
Modet 320. o ,
Performance of square-block copted methods on DECstation 3100 and IBM RS/8000
Model 320. |

Percentage of panel-blocked performance achieved with square-blocked codes. on
DE(Cstation 3100 and 1BM RS/6000 Model 320.

Increase in memory references due to data copying.

Benchmark matrices.

Benchmark matrix statistics.

Frequency of relative index computations and scatters for block method, compared
with floating-point operations (B = 16).

Frequency of relative index computations and scatters for block method, compared
with sequential multifrontal method (B = 16). . = . . .

Supernode amalgamation results.

3

Ax

i=

List of Figures

[RS - -

x

21
22
23
21
25

Modern sequential machine orgamzation

Modern parallel riachine srganization

Non-zeto structure of a matrix 4 and its factor [

Elimination tree of A.

Update matrix for column 2

Assembly of update natrix from column 2 into ipdate matnx of column §

Tae CompleteSuper(® primitive

The ModifySuper BySuper() pnimitive.

Increase 1n data traflic -lue to longer cache lines Cache size 15 64 KBytes in all v
Cache miss bohavior for various methods. matrix BOSSTKIS

Update rreation

Panel blocking for update creation

Matrnx-matrnx multipiy as a series of matnx-vector multiplies

Submatrnx blocking for update creation.

(“ache miss behavior for multifrontal supernode-mateix methad, using square blorks
for matrix BCSSTK15. Cache sizes 2K, 8K, and 32K

Cache miss behavior for multifrontal supernade-matnix method using square Diorks
and copying, for matrix BCSSTK15. .

Cache miss behavior for various methods, matrix BOSSTKIS S-S 15 supernude.
supernode. S-M is supernode-matrix.

A simple grid example. .

Grid example. .

Parallel speedups for two sparse matrices.

Parallel speedups for two sparse matrices. versus performance upper bounds
Maximum processor utilizations when considering load imbalance alone

Fraction of all floating-point operations performed within owned damains
("oncurrency in sparse problems

Communication to computation ra* os for sparse problems

X1

42

43
44

46
47

Performance for panel size of 3 relative to performance of best panel size
Performance relative to hest case

Paraliel speedups on DASH machine

Blocks used for update operauons

A 2-D round-robin distribution.

Performance results for destination-computes method n = 2045 2 = 64
Performance results for source-computes method. n = 2048, F < 64

A simple block example.

Performance results for prionitized source-computes method n = 2048 F = 64
Performance versus problem size for destinativn-computes method

Simulated and actual speedups for destination-computes method, for 25 and 36 pre-
cessors. Actual speedups are from the Stanford DASH madinne

Example of irregular block interaction. Dotted lines indicate boundaries of affected
Areas.

Example of globally partitioned matrnix.

Petformance of a sequential block approach, relative to a sequential left-locking
supernode-supernode approach, on a single processor of the Stanford DASH machine
Average floating-point operations per block operation.

Average floating-pcint operations per block operation, before and after supernode
amalgamation. ,
Performance of a sequential block approach. before and after supernode amalgama-
tion. relative to a sequential left-looking supernode-supernode approach

Parallel block fan-out algorithm. C e

Parallel speedups for block fan-out method on SG1 4D-280, B = 24.

Simulated parallel efficiencies for block fan-out method. B =24 . =
Simulated parallel performance, compared with load balance upper bound (B = 4)
Parallel utilization upper bounds due to load balance for BCSSTK 15 and BCSSTK 24,
compared with load balance upper bounds for dense problems { B = 24). 1n both plots,
sparse and dense problems perform the same number of floating-point operations. .
Communication versus compuiation for the block fan-out method.

Parallel speedups for block approach for BCSSTK 15 and BCSSTK29

Parallel speedups for block approach on the Stanford DASH machine.
Communicaiion volume of block approach. relative to a panel-oriented parallel mul-
tifrontal approach.

Performance of block approach relative to performance of panel approach.

Communication pattern for row/column multicast

xit

1in

119
120

140
141
T

Chapter 1

Introduction

Large sparse positive definite systems of linear equations arise in a wide variety of application
domains, including linear programming, finite element analysis. and process simulation. The most
widely used method for solving such systems is sparse Cholesky factorization. Given asystern Ar = b.
sparse Cholesky factorization decomposes A into the form A = LLT where L 1s lower triangular
with positive diagonal elements. The system is then solved by solving Ly = b and LT r = y. both of
which are easily done since L is lower triangular.

Sparse Cholesky factorization is unfortunately not without its limitations. Perhaps the most
important is the computational demands it makes. It is the bottleneck in applications that can
require days or even weeks of machine time to solve today's problems, and in many domains the
only thing preventing people from solving larger problems is the enormous runtimes they would
require. As aresult, there is great interest in obtaining higher performance from the sparse Cholesky
computation.

Qur goal in this thesis is to understand how this higher performance may be obtained. Qur
primary emphasis will be on obtaining not only higher performance, but also cost-¢ffective perfor-
mance. That is, our focus will be on issues that are important for obtaining high performance from

inexpensive machines.

1.1 Trends in Computer Architecture

Recent trends in computer architecture have made it clear that affordable high performance is indeed
achievable. The trends we are referring to are the enormous increase in the speeds of inexpensive.
commodity microprocessors and the emergence of parallel processing technology to interconnect
large numbers of these processors together. Engineers will soon see affordable machines with close
to ! GFLOPS performance, and active research is being done on 1 TFLOPS machines.

While the details of high-performance machines naturally vary quite a bit across machines. at the

CHAPTER |. INTRODUCTION

L™

Processor

Level 1 cache

1

Level 2 cache

Main memory

Figure 1: Modern sequential machine organization.

same time their most important aspects appear to have converged. An overview of the most common
sequential machine organization is shown in Figure 1. Processors with clock speeds of 100 MHz are
not uncommon in today's machines. with 200 MHz clock speeds on the horizon. An important aspect
of these processors for our purposes is their potential for extremely high floating-point performance.
Today's processors may perform as many as 2 floating-point operations per clock cycle (although
some perform only one operation every 3 to 5 cycles).

Of course, floating-point computations can only be performed as fast as the relevant data can be
fed into the floating-point units. Unfortunately, the speed of the memory from which this data s
fetched has not kept up with the speed increases of processors. While it is possible to build a main
memory that can provide data to the floating-point units as quickly as they can perform operations
on this data, the cost of such a memory system would be enormous. The majority of the cost of a
vector supercomputer. for example, goes to its high-bandwidth memory system.

In microprocessor-based machines, this memory bottleneck is alleviated through the use of hi-
erarchical memory organizations, in which one or more levels of cache are interposed between the
fast processor and the slow, inexpensive main memory. The caches are made up of small amounts of
very high speed memory. When the processor references a memory location, a copy of that location
is held in the cache so that a later reference to that location can be serviced quickly.

As for the hierarchy, the first level cache is frequently found on the actual processor chip. Fast
processors can often not afford to go off-chip to fetch data. On-chip first level caches are typically
quite small, since space is tight on the processor chip. Common on-chip caches today are between
8 KEytes and 32 KBytes. and they typically service processor memory requesis in a single processor
cycle.

While many machines are built with only a single level of cache. two-level caches are also quite

CHAPTER |. INTRODUCTION

\pE/ .\PE? PE “ PE PE PE
& ¢ c c ¢ ¢
e I
Memory Memory
— - Interconnection ‘
‘Pe’ PE} | PE Network P PE
SN e .
¢ ¢ c . C
-_Iuw_ﬂjbw _— —
Memory Memory

Figure 2: Modern parallel machine organization.

common, especially in machines with small on-chip first level caches. The second-level cache 1
generally significantly larger than the first level cache, typically containing between 64 KBytes and
1 MByte of relatively fast memory. Access times are larger than those of the first level cache.
requiring anywhere from 5 to 20 cycles, but they are still significantly faster than main memor,
accesses, which may take anywhere from a few tens to a hundred or more cycles.

Parallel machine organizations appear to have converged as well, with virtually all modern paral-
lel machines looking like the machine shown in Figure 2. The memory hierarchy in parallel machines
is further extended due to the introduction of a distributed main memory. That is, main memory
is distributed among the processors, with some portion of the global main memory being physically
local to each processor. A processor/local memory combination is typically referred to as a cluster
A cluster often contains a single processor. although clusters with multiple processor are becomung
more common. Examples include the Stanford DASH machine (4 processors per cluster) {27]. the
Intel Paragon MP node (4 processors per cluster), and the Thinking Machines ("M5 (4 vector umts
per cluster).

In distributed memory parallel machines, access locality is even more important than it s n
sequential machines. A memory access from a processor to a non-local portion of memory 15 many
times more expensive than a reference to local memory (typically three or more times). Furthermore
the interconnect network generally provides relatively low aggregate interprocessor communication
bandwidth. 1t could not possibly support the traftic that would be generated if processors were 1o
access non-local memory locations frequently.

We should note that there are a variety programming models for distnbuted-memory machine

CHAPTER 1. INTRODUCTION

The two most common are the message-passing model where a processor can acress data in apother
processor's memory only by receiving a message from the other processor. and the shared-mietion
ot uniform-address-space model, where a processor can aceess any location 1 the entize machine
with ordinary memory references. This thesis will make few assumptions about which progranmiming
model a parallel machine provides.

The appeal of a hierarchical memory organization. whether for sequential ar parallel machines
is clear. Machines with such an organization offer both cost-effective and scalable performance
They are cost-effective because the individual components that they are built cut of including high-
speed microprocessors, slow main memortes, and small amounts of high-speed cache memary are
all inexpensive. They are scalable because the machines themselves have no inherent performance
himitations. For parallel programs that make good use of the memory hierarchy so that processors
service the vast majonty of their memory accesses from their caches and their local memories, the
performance of the program can be improved by adding more processors (with the corresponding

caches and local memories).

1.2 Algorithm Design for Hierarchical Memory Organiza-

tions

The performance of a computation on a machine with a hierarchical memory organization will
clearly depend on the extent to which that computation reuses data in the faster. closer levels of the
hierarchy. Unfortunately, the majority of linear algebra computations, as they would most naturaily
be written, make very poor use of a memory hierarchy. In streaming through large matrices. these
computaticns wind up displacing data items from the cache before they are reused. resulting in
extremely high cache miss rates and low performance.

As an example, consider the matrix multiplication Z = XY, where all matrices are v x N

for i=1 to N do
for j=1 to N do
for k=1 to N do
Z[ij) = Z[j) + X[i k]« Yk]

The entries in X, Y, and Z are each reused N times throughout the course of the computation
thus providing significant opportunities to reuse data in a memory hierarchy. ' nfortunately. it 1~
extremely unlikely that the Y elements will be retained in a cache. Between one use of an elemen:
of Y and the next, the entire Y matrix is referenced. Unless the whole ¥ matrix fits in the cache
(an unlikely prospect), each reference to ¥ will result in a cache miss.

Fortunately, many such computations can be reorganized through the use of blocking techmques

CHAPTER |. INTRODUCTION f

to make good use of a memory hierarchy A computations sand to be blocked when it s restrncturesd
so that a block of data that fits in the cache 15 intentionally reused after 1t has been foaded In the

matrix multiplication example above. the computation would be blocked as follows

tor [=1 to N/B do
for J =1 to V/B do
tor A =1 to N/B do
for 1=1 to B do
for j=1 to B do
for k=1 to B do
ZIIsB+iJsB+)l=Z{isB+1.Je8+ i+
X[[eB+1. K« B+klsY[RsB+k JeB+)

Given a particular /. J, and A iteration. the inner three loops in the above example access Hx H
submatrices of X', Y. and Z. The block size B can be chosen so that these submatrices are small
enough to remain in the cache. As a result. the inner three loops cache miss on 387 data items. but
they reference these items 383 times. thus reusing every data item B times

A large variety of linear algebra computations can be blocked The BLASS bibrary [14] for
example. provides a number of important dense matrix kernels in blocked forms. and the LAPACK
linear algebra library [2] implements several important dense linear algebra computations, incjuding
dense linear system solvers and dense eigenvalue solvers. on top of these blocked BLARY kernels
Progress has also been made on compiler-automated blocking [12. 47]

Blocking techniques are even more relevant for parallel machines with herarchical memory orga-
nizations. since these machine present several additional challenges for achieving high performance
The individual processors must still achieve significant data reuse to avoid the latencies associated
with accessing main memory. Furthermore, in cases where several processors share a portion of man
memory, data reuse is crucial for avoiding saturation of this memory. Processors must also minymize
traffic on the interprocessor interconnect, both because such traffic will suffer from large latencies
and also because the interconnect network may saturate. Progress has been made on performimng
dense matrix computations efficiently on parallel machines with memory hierarchies {3, 19 44] agamn
through the use of blocking techniques.

In contrast to most earlier work which has focused on blocking techniques for dense matrin
computations, this thesis considers the use of blocking techniques for sparse Cholesky factanzation
on sequential and parallel machines with hierarchical memory orgamzations. Qur goal is to evaluate
the memory system behavior of existing approaches and to propose and evaluate new approaches

that address the performance bottlenecks that are observed.

CHAPTER I. INTRODUCTION ¢

1.3 Organization of Thesis and Summary of Results

Chapter 2 begins by discussing sparse Cholesky factonzation The strurture of the computation s-
described, and several unportant sparse factornization concepts are discussed

Chapter 3} then considers specific methods for sequential sparse Cholesky factonization 1o e
scribes the data structures and computational kernels used for this computation 1t also describe the
three primary algorithmic approaches that are used to perform the factonization the left-ooking
right-looking. and multifrontal approaches

Chapter J continues by exploring the performance of these sparse factonization approaches on
hierarchical memory machines. Not surprisingly. we find that traditicnal approaches to the factor
1zation, called nodal methods. achieve extremely low performance on such machines due 1o thess
poor utilization of the memory hierarchy. We then consider methods that take advantage of the ex.
istence of supernodes (sets of columns with identical non-zero structurel to alleviate this bottleneck
We look at supernodal variants of the lefi-looking. right-looking, and mulufrontal approaches and
find that these methods achieve significantly higher performance than their nodal counterparts. due
primarily to significantly better reuse of data in the memory hierarchy. Overall. we find that by re-
structuring the sequential sparse Cholesky computation to make better use of a cache. performance
can be increased by a factor of roughly three over nodal methods on today's hierarchical mem-
ory machines. We also find that after restructuring the computation in this way. the performance
differences between the left-looking, right-looking. and multifrontal variants effectively disappear

Having established the importance of data reuse on a single processor. the thesis then turns 1o
the 1ssue of data reuse on a parallel machine. Before investigating specific parallel factonzation
methods, Chapter 4 first describes our parallel evaluation environment. We describe the Stanford
DASH machine. a 64 processor machine that will provide some of cur performance numbers. We also
descrite a parallel performance simulation model that we use to better understand the performance
of parallel methods and to obtain further performance numbers.

Chapter 5 then proposes an algorithm that achieves sigmficant data reuse for parallel sparse
Cholesky factorization. The algorithm, a panel multifrontal method. is a natural extension of an
existing column-oriented parallel version of the multifrontal method. The extension involves the
use of contiguous sets of columns, called panels. to increase data reuse within the processors The
performance of this method is studied in detail. We find that this panel method improve performance
by a factor of two to three over column methods. However, we also find that both have several serious
limitations for large parallel machines. The most important 1s that these methods do not expose
enough concurrency in the sparse problem to allow a large number of processors to be used effectively

The limitations we run into in Chapter 5 for sparse matrices are 1dentical to those that have heen
experienced by others [44] for dense matrices. These same problems have been overcome for dense
matrices using a two-dimensional or block decomposition of the sparse matrix (as vpposed to the

one-dimensional decomposition used for the panel approach) We therefore turn nur attention to the

CHAPTER |. INTRODUCTION v

question of whether a block decomposition would provide sigmiticant benefits for sparse problems
Chapter 6 considers general issues related to the use a block decormpaosition for Cholesky factonzaue
We restrict our study in Chapter 6 to dense matnices 1n order to focus an the more general issues
that are relevant for any block method.

Chapter 7 then considers the use of a block Jdecomposition for sparse matrices. The main chal
lenges for a block approach are in decomposing a sparse matnx into blocks that can be manpadated
efficiently and structuring a parallel computation in terms of such blocks. Obvicus approaches L
to high overheads and substantial complexity. We propose a block decomposition strategy that s
both simple and efficient. Qur approach is found to provide good performance on a wide range «f
parallel machine sizes. We compare this block method with the panel method of the previous chap
ter. The block method is shown to provide numerous advantages. including demonstratably highoer
performance on small parallel machines and asymptotically better performance on large machines

Finally. Chapter 8 presents conclusions.

Chapter 2

Sparse Cholesky Factorization

This chapter gives a brief description of the sparse Cholesky factorization computation. The goal
of sparse Cholesky factorization is to factor a sparse. symmetric. positive definite matrix A4 into the
form A = LLT, where L is lower triangular. The computation is typically performed as a series of
three steps. The first step. heuristic reordering, reotders the rows and columns of 4 1o reduce fill in
the factor matrix L. A fill entry is one that is zero in the original sparse matrix but becomes non-zero
during the factorization process. The second step. symbolic factorization. performs the factorization
symbolically to determine the non-zero structure of L after the fill has occurred. Storage is allocated
for L in this step. The third step is the numertcal factorization. where the actual non-zero values
in L are computed. This step is by far the most time-consuming, and 1t is the focus of this thes:s
We refer the reader to {23] for more information on all of these steps.

To make our discussion in this chapter more concrete. we will use a simple example matrix
The example matrix and its factor are shown in Figure 3 (Dots represent non-zeroes: the diagonal

elements are non-zero as well.)

. . [
s 2 o 2
3 e . 3
[] 4 o e o
5 e)
A= e o e 6 L = [} » a8 6
T e . 7
. . e X
9 e o 9
. . 0 o ko [] s o o 0
\ L) . 11 . L] 11

Figure 3. Non-zero structure of a matrix A and its factor L

CHAPTER 2. SPARSE CHOLESRY FACTGRIZATION ¥

The following pseudo-code performs numerical factorization.

1. for k=1 to n do

2 for 1 =k to n do

3 Lie = Lie/ Ve

4. for j=k+ 1 to n do

5 for t =) to n do

6 Ly — Ly — Ll

The computation is typically expressed in terms of columns of the sparse matnix Within o
column-oriented framework, steps 2 and 3 are typically thought of as a single operation. ralli
a column division or cdiv() operation. Similarly. steps 5 and 6 form a column modification, or

emod(j, k). operation. The computation then looks like:

1. for k=1 to n do

2 cdiv(k)

3. for j=k+ 1 to n do
4 cmod(j, k)

Only the non-zero entries in the sparse matrix are stored. The standard storage scheme stores
the matrix by columns. with each non-zero entry in a column having both a value and a row nuniher
associated with it. The factorization computation only performs operations on noa-zeroes This
means that step 4 is only necessary when L;; is non-zero. In our example matrix. column | would
therefore modify columns 2, 4, 6. and 10. It also means that only a subset of the non-zeroes 1n the
destination column j are affected by a emod(j. k) operation.

The above formulation of the sparse Cholesky computation is typically referred to as a right-
looking (or submatriz-Cholesky) approach. since column k is used to modify several columns to s
right in the matrix. A left-looking {or column-choleksy) formulation is obtained by rearranging the

loops above, giving:

1. for j=1 to n do

2 for k=1to j—1 do
3. cmod(j, k)

4 cdiv(j)

In this case. column j is modified by several columns to its left. Note that the convention i bath

cases is that k iterates over source columns and j iterates over destination columns. Note also that

CHAPTFR 2. SPARSE CUHOLESKY FACTORIZATION b

the cmod() operation 15 performed several times per column while the cdivt) operation s performed
only once. The emod() operation therefure domunates the runtume

In a cmod{j. k) operation on a sparse prablem. the columns j and & generally bave differen:
non-zero structures: the struccure of the destination j 1s a superset of the structure of source & I
add a multiple of column £ into calumn j. the problem of matching up the appropriate entries 1y
the columns must be solved. The left-looking and right-looking approaches to the factorization bead

to three different approaches to the non-zero matching problem

2.1 Matching Non-Zeroes

In the left-looking approach. the same destination column j s used for a number of consecutive
cmod{) operations. The non-zero matching problem is resolved by scattering the destination column
into a full vector. In other words. a non-zero in row ¢ of column j would be held in absclute position
t in the full vector. Columns are added into the full destination vector using an indirection. where
the destinations are determined by the non-zero structure of the source column. The full vector 1s
gathered back into the sparse representation after all column modifications have been performed
This approach is used in the SPARSPAK sparse linear algebra package {25]. Further details will be
provided in the next chapter.

A stmple right-looking implementation solves the non-zero matching problem by searching theough
the destination to find the appropriate locations into which the source non-zeroes shouid be added
If the non-zeroes in a column are kept sorted by row number. which they typically are. then the
search is not extremely expensive, although it is much more expensive than the simple indirection
used in the left-looking apptoach. This approach was used in the fan-out parallel factorization code
[22].

Another approach to right-looking factorization, called the multifrontal method {17}, performs
right-looking non-zero matching much more efficiently. The multifrontal method is more complicated

than the methods that have been described so far, so we describe it using a simple example.

2.2 Elimination Tree

Before describing the multifrontal method. we first describe the elimination tree [42] of the sparse
matrix. a structure that will be crucial for understanding the muitifrontal method and several other
methods ronsidered in this thesis. In the elimination tree. each node represents a column of the

matnx. The edges are defined as:
parent(j) = mun{ilL,, £ 0.1 > j}

In other words, the parent of column ; is determined by the first sub-diagnnal non-zero m rolumn

Equivalently. the parent of eolumn j is the first eolumn modified by colurun § Frgure 1 shows th

CHAPTER 2. SPARSE CHOLESKY FACTORIZATION i

Figure 4. Elimination tree of A.

elimination tree of the example matrix from Figure 3. The elimination tree provides a great deal f
information about the structure of the sparse Cholesky computation. For example. it can be shown
that a column can only modify its ancestors in the elimination tree. Equivalently, a column can only

be modified by its descendents.

2.3 The Multifrontal Method

Returning to our description of the multifrontal method. we note that the most important data tiem
1n this method i1s an update from an entire subtree in the elimination tree to some destination column
In a sequential multifrontal method, all updates from a single subtree to subsequent columns are
kept together in a dense lower-triangular structure, called a frontal update matriz. As an example.
the subtree rooted at column 2 in the matrix of Figure 3 would produce an update matrix that looks
like the matrix in Figure 5. Note that the affected destination columns are a subset of the ance tor
columps of that subtree. Note also that the columns of the update matrix have the same non-zero
structure as the column at the root of the subtree that prcduces them. In the example. column ¥
produces updates to rows 4, 6, and 10 in the destination columns.

To compute the frontal update matrix from a subtree rooted at some column k. the update
matrices of the children of k£ in the elimination tree are recursively computed. These update matriers
are then combined, in a step called assembly, into a new update matrix that has the same structure
as column k. For example, the update matrix for column 4 is computed by assembling the update
matrices from columns 2 and 3. The assembly of the update from column 2 into the update {rom
column 4 i1s depicted in Figure 6. The update matrix from column 3 would be handled in a sinular
manner. The actual assembly operation typically makes use of relative 1 dices [7. 42} for the child
relative to the parent. These relative indices determine the locations whers updates from the child

update matrix are added in the destination. The relative indices in this example would be {13, 1}

CHAPTER 2. SPARSE CHOLESKY FACTORIZATION

= \ s .
- N
W e X
e
Howow
How

Figure 5: Update matrix for column 2

Lamn 4
o4
Uprdate matrix from Tow 4 -
Tolumn O

Update ro fow S

column 4

Fow 4 jpdate =g s nd —
siamn 5]
- £ /
Wk
jare
~ /
oUW J

Figure 6. Assembly of update matrix from eolumn 2 into update matrix of column 4

4

CHAPTER 2 SPARNE CHOLFSKY FACTORIZATION i

adicating iinat the Brst row i the chadd corresponds ot fiest row i the desristion the et
row corresponds to the third and the thind rew corresponads to the farth Note that the s
correspondence holds between the columns . Onee the relatve gidices have been computed a0 s o
stnple rnatter to scatter the ~hdd update columns wato the destinatoon

Once the child update matrees have been added into the current npdate matnx rhe pext st
15 to compute the final values for the entries of the current column In the exatnple poee that e
updates from the shldren atfect column 4 as well as columms updated by column 1 After the by dar
raatnx has been asseenbled. the anginal non-zeroes from column 4 are added it the ypedate matroy
A edun(y operation is then performed on column 1 to compute the final vadues i that codumn Hhe
next step 18 to compute the apdates produced directly from cobumn 4 to the rest of the mates
Thess updates are added 1into the update matrnix 1 the last step. the inal values for column 4 are
copird from the update matnx back into the storage for cotumn 4

An umportant issue n the multifrontal methed 5 how the update matniees == stored 1 the
~olumns of rhe elimunation tree are visited using a post-order traversal o 1o date matrices
can be kept on a stack. known as the update matmr stack Voo a eolumn s visited . the update
matrices from its chuldren are available at the top of the stack They are removed from the stack
assemnbled. and a new update matrix s placed at the new top of (e vn The cndate matnx stack
typically increases data storage requirements by a significant amount sanging {rom 157 16 25% o

1

more depending on the matnx For more information on the multifrontal method, see 7171

2.4 Supernodes

Anamportant concept in sparse Cholesky factorization s that of a supernode A supernode v a et of
contiguous columns in the factor whose non-zere structure consists of a dense tnangular block on the
dragonal. and an identical set of non-zeroes for each column below the diagonal A supernode mus
also form a simple path in the elimination tree. meaning that each column in the supernode must
have only one child in the elimination tree. As an example. consider the matrix of Figure 3. Columns
i through 2 form a supernode in the factor. as do columns 4 through 6. rolumns 7 through Y. and
solumns 10 through 11 Supernodes arise in any sparse factor. and they are typically quite largs
Probably the most important property of a supernode is that each member coiumn modifies the
same set of destination columns. Thus. the Chelesky factorization computation can be expressed
in terms of supernodes modifying columnns. rather than columns modifying columns A left-beking

supernodal approach would look hike

1 for) =1 to n do

2 ediv())

3. for each s that modifies ; do
4 smod{), «)

CHAPTER 2. SPARSE CHOLESKY FACTORIZATION i4

where smod(j,s) is the modification of a column j by supernode s The modification of a
column by a supernode can be thought of as a two-step process. In the first step. the modification.
or update. from the supernode is computed. This update is the sum of multiples of each column
in the supernode. Since all columns in the supernode have the sam. structure, this computation
can be performed without regard for the actual non-zero structure of the supernode. The update
can be computed by adding the multiples of the supernode columns together as dense vectors In
the second step. the update vector is added intc the destination. taking the non-zerc structure into
account. Supernodes have been exploited in a variety of contexts [11. 17, 35].

The supernodal structure of the matrix is crucial to the multifrontal method. since 1t greatly
reduces the number of assembly operations required. Since columns in a supernode share the same
non-zero structure, they can share the same frontal update matrix. The update matnx therefore
contains the updates from a supernode and its descendents in the elimiration tree, rather than
simply the updates from a single column and its descendents.

Supernodes will be exploited for a variety of purposes in this thesis.

2.5 Generalized Factorization

The three high-level approaches to sparse Cholesky factorization, the left-looking. right-looking.
and multifrontal methods, have so far been expressed in terms of column-column or supernode-
column modifications. This thesis will actually consider a wider range of primitives for expressing
the computation. It is therefore useful Lo think of the factorization computation in more general

terms. A generalized left-looking Cholesky factorization computation would look like:

1. for j=1 to NS do

2 for sach k£ that modifies) do

3. ComputeUpdateToJFromK(;, k)
4 PropagateUpdateToJFromkK(j, k)
5 Complete(;)

In the above pseudo-code, the Compiete() primitive computes the final values of the elements
within a structure {a column, for example), once all modifications from structures to its left have been
performed. The Computel’pdate() primitive computes the update from one structure to the other
The Propagatel'pdate{) primitive subsequently adds the computed update into the appropriate
destination locations. In the case of the emod(} primitive, the computation and propagation of

the update are performed as a single step. The NS term in the above pseudo-code represents the

CHAPTER 2. SPARSE CHOLESKY FACTORIZATION 15

number of different destination structures in the matrix. An important thing to note s that j and
k do not necessarily iterate over the same types of structures.

The right-looking and multifrontal methods generalize in a similar manner. A generahized night-
looking approach would use the same primitives in a different order. A generalized multifrontal
approach would be similar, but it would compute the update directly 1uto the appropriate subtree
update matrix and it would perform update propagation during the assembly step instead of in a
Propagatel pdate() primitive.

This thesis will consider a range of possible choices for the structures j and k. Clearly. to he
interesting choices, the chosen structures must lead to efficiently implementable primitives. For se-
quential factorization, we limit ourselves to three choices: columns, supernodes, and entire matrices
For parallel factorization. we will also consider panels, which are subsets of supernodes. We will
give more details about how the actual factorization computation is performed in terms of these

structures in later chapters.

Chapter 3

Sequential Sparse Cholesky

Factorization

3.1 Introduction

This chapter will consider sparse Cholesky factorization on sequential hierarchical-memory machines.
We present a comprehensive analysis of the performance of a variety of factorization methnds. Qur
goal is to understand the impact of several important implementation decisions on the performance
The first and probably most visible implementation decision is the structure of the overall computa-
tion. We consider three common apptroaches: left-looking, right-looking, and multifrontal. A second.
independent implementation decision is the choice of primitives on which to base the computation
The most commonly used primitives are column-column primitives, where columns of the matrix
are used to modify other columns. We demonstrate that these primitives yield low performance
on hierarchical-memory machines, primarily because they exploit very little data reuse. With such
primitives, data items are fetched mainly from the more expensive levels of the memory hierarchy

We nevt consider factorization methods based on supernade-column primitives, where a column
is modified by an entire supernode at once. An important property of the supernode-column modifi-
cation operation is that it can be unrolled [15]. The unrolling allows data iicms from the destination
to be kept in processor registers across multiple modifications, thus increasing data reuse. As a
result, for moderately large sparse problems, memory references are reduced by more than 50% and
performance is improved by between 50% and 100%. We also consider column-supernode primutives.
where a single column is used to modify several columns in a supernode. While the reuse benefits
of such primitives are qualitatively similar to those of supernode-column primitives. the achieved
benefits are much smaller.

We then consider primitives that modify several destination columns by seveial sourre columns

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION i

at once. We first look at a simple case. consisting of supernode-parr primitives. where pairs of
columns are modified by supernodes. Such methods further increase the amount of exploitable
reuse. Memory references are reduced by another 35% from the supernode-column methods. and
performance is improved by between 30% and 45%. We then consider the use of supernode-supernode
primitives. where supernodes modify entire supernodes. Such primitives allow the compuraton to
be blocked to increase reuse in the processor cache. Factorization codes based on these primitives
further improve performance; we observe a 10% to 30% improvement over supernode-pair codes

Finally, we look at supernode-mairiz primitives. where a supernode is used to modify the entire
matrix. The multifrontal method is typically expressed in such terms. Supernode-matnix prinutives
make even more data reuse available. We find, however. that the impact of this increase 1s sma’l
supernode-matrix methods yield roughly the same performance as supernode-supernode methods
The reason is simply that supernode-supernode methods exploit almost all of the available reuse.

This chapter then continues by considering issues that are important for realistic cache designs.
including the effects of cache size, cache line size, cache set associativity. and cache interference.

This chapter makes the following contributions to the understanding of the sparse Cholesky
computation. First, it compares a number of different methods using a consistent framework. For
each method. we factor the same set of benchmark matrices on the same set of machines. thus
allowing for a more detailed analysis of the performance differences between the methods. This
chapter also provides a detailed study of the cache behavior of the different methods. We study
the impact of a number of cache parameters on the miss rates of each of the factorization methods
Finally, this chapter analyzes supernode-supernode methods. a class of methods that have so far
received little attention {11]. We believe that we are the first to publish detailed performance
evaluations of practical implementations of supernode-supernode methods.

The chapter is organized as follows. Section 3.2 begins by describing our experimental envi-
ronment. Section 3.3 then consider several implementations of the high-level approaches based on
different primitives. We look at the memory system performance of each of these variations. as well
as the achieved performance on two hierarchical-memory machines. In section 3.4. we consider the
consequences of changing a number of cache parameters, including the size of the cache. the size of
the cache line, and the degree of set-associativity of the cache. Section 3.5 then discusses different
approaches to blocking the sparse factorization computation. and considers how each approach inter-
acts with the memory hierarchy. Finally. we discuss the results in section 3.6 and present conclusions

in section 3.8.

3.2 Experimental Environment

This chapter will provide performance figures for the factorization of a range of benchmark matrices

on two hierarchical-memory machines. We now describe the benchmark matrices and the machines

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION I

Table 1. Benchmark matrices

| | Name [Description i Equations © Non-zeroes
1. | LSHP3466 Finite element discretization of L-shaped region 3466 | 20 430
2. | BCSSTKI14 || Roof of Omni Coliseun, Atlanta 1206 61 64~ |
3. { GRID100 5-point discretization of rectangular region 1000 RN
4. | DENSE750 || Dense symmetric matrix 750 H61 7HU
5.1 BCSSTK23 || Globally Triangular Building 3134 ERIER Y
6. | BCSSTK15 || Module of an Offshore Platform 3.93x I3 m68
7. | BCSSTKI18 || Nuclear Power Station 11.94% 137 142
3. 1 BCSSTKI16 || Corps of Engineers Dam 4 AR4 285 494

Table 2: Benchmark matrix statistics.

Floating-point | Non-zeroes
Name operations in factor

1. | LSHP3466 4,029.836 83.116
2. | BCSSTK14 9.795,237 110.461
3. | GRID100 15,707,205 250.835
4. | DENSET750 140,906.375 280.875
5. | BCSSTK23 119,158.381 417.177
6. | BCSSTK15 165,039.042 647,274
7.1 BCSSTK18 140,919.771 650.777
8. | BCSSTKI16 149.105.832 736,294

To evaluate performance, we have chosen a set of eight sparse matrices as benchmarks. These
matrices are described in Tables 1 and 2. With the exception of matrices DENSE7T50 and GRID1UO.
all of these matrices come from the Harwell-Boeing Sparse Matrix Collection [16]. Most are medium-
sized structural analysis matrices, generated by the GT-STRUDL structural engineering program
Note that these matrices represent a wide range of matrix sparsities. ranging from the highly sparse
LSHP3466, all the way to the completely dense DENSET750.

rows/columns in all benchmark matrices are reordered using the multiple-minimum-degree heuristic

in order to reduce fill in the factor. the

[30] before the factorization.
Performance results for the factorization of these matrices will be presented in (wo ways i
The

summary numbers will take three forms. One will be mean performance (harmonic mean) aver all

this chapter. We will typically present numbers for each matrix and summary numbers.
the benchmark matrices. In order to give some idea of how the methods petform on small and large
problems, we will also present means over subsets of the benchmark matrices. In particular. we call
matrices LSHP3466, BCSSTK14. and GRIDI100 small matrices. and similarly we call BOSSTRI5
BCSSTKI16. and BCSSTKLS large matrices. We do not mean to imply that the latter three matrices
are large 1n an absolute sense. In fact. they are of quite moderate size by current standards We

simply mean that they almost fill the main memories of the benchmark machines. and thus are the

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION Ju

largest matrices in our benchmark set.

The two machines on which we perform the sparse factorization computations are the DECsta-
tion 3100 and the IBM RS/6000 Model 320. Both are RISC machimes with memory hierarchies The
DECstation 3100 uses a MIPS R2000 processor and an R2010 Hoating-pomnt coprocessor. each oper.
ating at 16 MHz. It contains a 64-KByte data cache. a 64-KByte mstruction cache, and 16 MBytes
of main memory. The machine is nominally rated at | 6 double-precision LINPACK MFLOPS The
IBM RS/6000 Model 320 uses the IBM RS/6000 processor. operating at 20 MHz. The Maodel 320
contains 32 KBytes of data cache, 32 KBytes of instruction cache, and 16 MBytes of mamn memory
The Model 320 is nominally rated at 7.4 double-precision LINPACK MFLOPS'!

The data cache on the DECstation 3100 is direct-mapped. meaning that each location in memeaory
maps to a specific line in the cache A fetched location displaces the data that previously resided
in the appropriate line. Two memory data items that map to the same line and frequently displace
each other are said to interfere in the cache. The cache lines in the DECstation 3100 are 4 bytes
long.

The data cache on the IBM RS/6000 Model 320 is 4-way set-associative. meaning that each
location in memory maps to any of 4 different lines in the cache. Replacement in the cache is dane
on an LRU, or least-recently-used basis, meaning that a fetched iocation displaces the least recently
used of the data items that reside in its four possible lines. Each cache line contains 64 bytes.

The relative costs of various operations on these machines are quite important for understanding
their performance. On the DECstation 3100, a double-precision multiply requires 5 cycles. and a
double-precision add requires 2 cycles. Adds and multiplies can be overlapped in a imited manner
A single add can be performed while a multiply is going on. but an add cannot be overlapped with
another add. and similarly a multiply cannot be overlapped with another multiply. The peak floating-
point performance of the machine is therefore one multiply-add combination every 3 cycles. A cache
miss requires roughly 6 cycles to service. A double-precision number spans two cache hines. thus
requiring double the cache miss time to fetch. On the IBM RS/6000 Modet 320, adds and multiphes
each require two cycles to complete. However. the floating-point unit is fully pipelined. meaning
that adds and multiplies can be overlapped in any possible way. A floating-point instruction can be
initiated every cycle. Furthermore, the machine contains a multiply-add instruction that performs
both instructions simultaneously. The RS/6000 can issue up to four different instructions in a single
cycle. The peak floating-point performance of the IBM RS/6000 1s one multiply-add per cycle. A
cache miss on the Model 320 requires roughly 15 cycles to service. bringing in a 64-byte cache line

From these performance numbers. it is clear that memory system costs are an extremely im-
portant component of the runtime of a matrix computation. The cost of performing floating-point

arithmetic is dwarfed by the cost of moving data between the various levels of the memory hierarchy

1Since we performed this study, newer models of the above machines have heen released (the DECstation 5000/ 240
with a 40 MHz R3000 processor and the [BM RS/6000 model 980, with o 50 MHz RS/6000 pracessor) We expert
the results presented here to be similar for the newer machines

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 2

As a simple example, the RS/6000 requires more mstructions to load three operands from the cacte
1o processor registers than it does to petform a double-precision multiply-add operation on them
The cost of loading them from main memory s much higher For this reason. the performance of o
linear algebra sgram in general depends more on the memory system demands of the program than
on the number of floating-point operations performed. Our analysis of factorization performanc
will concentrate on the memory svstem behavior of the various approaches

To provide concrete numhers for comparing the memory system behaviors of the various fac
torization methods. we will present counts of the number of memory references and the munber f
cache misses a method generates in factoring a matrix. These numbers are gathered using the Tang.
simulation environment [13] Tango is used to instrument the factorization programs to produce i
trace of all data references the programs generate. We count these references to produce memeory
reference counts and feed them into a cache simulator to produce cache miss counts

Another factor that will be important in understanding the performance of the IBM RS/6000 15
the amount of instruction parallelism available in the various factorization approaches This machine
has the ability to issue up to four instructions at once, but such a capability will naturally go unused
if the program is unable to perform many useful instructions at the same time. Unfortunately. the
impact of this factor on performance 1s difficult to quantify. We will give intuitive explanations for

why one approach would be expected to allow more instruction parallelism than another

3.3 Sparse Cholesky Methods

We now consider a number of different primitives for expressing the sparse Cholesky computation
For each set of primitives, we consider left-looking. right-locking. and muitifrontal implementations
Our goals are to examine the benefits derived from moving from one set of primitives to another to
examine the differences between the three high-level approaches when implemented in terms of the
same primitives, and to explore the different behaviors of the methods on the two different machines.
Our goal is not to explain every performance number. but instead to discuss the general 1ssues that
are responsible for the observed differences. To keep the differences as small as possible. the thre:

approaches use identical implementations of the primitives whenever possible

3.3.1 Assorted Details

To make the performance numbers that will be presented in this section more easily interpretable
we now provide additional details of our specific implementations. In particufar, we provide detagls
on our multifrontal implementation.

The implementation of the muitifrontat method has a number of possible variations One van-
ation involves the particular post-order traversal that 1s used to order the columns. We choose the

traversal order that minimizes necessary update stack space, using the techniques of {32} We do next

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION !

include the time spent determining this order 1in the computation times presented tn the chapter

Another possible source of variation in the mulufrontal method 15 1n the approach used 1o handie
the update matrix stack. We use an approach that differs shightly from the traditional one inoorder
to remove an obvious source of inefliciency for hierarchical-memory machines In order o add
new update matrix to the top of the stack. the multifrontal method must first consume a nunber
of update matrices already there. A traditional implementation would compute the new update
matrix at one location, remove the consumed update matrices from the top of the stack, and then
copy the completed update matrix to the new top of the stack. Such copying is very expensive un
a hierarchical-memory machine, so we introduce a simple trick to remove it Rather than keeping
a single update matrix stack, we keep two stacks that grow towards each other. Update matrices
are consumed from the top of one stack. and produced onto the top of the other stack. Another
way of thinking about this trick is 1n terms of the depth of a supernode in the ehmination tree
The update matrices from supernodes of odd depth are kept on one stack. with the update matrices
from supernodes of even depth on the other. This trick eliminates the necessity of copying update
matrices. This approach is not without costs, however. We observed a 20-50% increase in the
amount of stack space required. This modification introduces a tradeoff between the performance
of the computation and the amount of space required to perform 1t. We investigate the higher
performance approach.

We note that another way to obtain the benefits of this trick would be to use heap-allocated
dynamic memory. That is, a multifrontal method could obtain new update matrices using malloc()
calls (using C syntax), and it could return them to heap when finished with them using free() calls
One potential problem with such an approach is fragmentation The multifrontal method requires
many small update matrices near the leafs of the elimination tree and thus near the beginning of
the computation. To make efficient use of storage, the resulting small memory blocks would have to
be combined into larger blocks for the later stages of the computatioc when fewer. larger updates
are required. While many heap memory managers perform this free block combining. many others

do not. We therefore do not use dynamic memory allocation ia our implementations.

3.3.2 Column-column Methods

We first consider factorization approaches based on cdiv{) and emod() primitives. Since these prinn-
tives work with individual columns, we refer to the corresponding methods as column-column meth-
ods. We begin by presenting performance numbers for left-looking, right-looking. and multifrontal
rolumn-column methods (Table 3). We use double-precision arithmetic in these and all other imple-
mentations in this chapter. Note that in this and all other multifrontal implementations. one frontal
update matrix is computed per supernode.

Oune interesting fact to note from this table is that the three methods achieve quite simular

performance on the DECstation 3190, The fastest of the three methods. the multifrontal methaod

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION

Yo
[

Table 3. Performance of column-column methods on DECstation 3100 and IBM RS/6008 Moded
320.

Left-looking || Right-looking [| Multifrontal

MFLOPS MFLOPS MFELOPS
Problem DEC [IBM || DEC | IBM [DEC | IBM
LSHP34566 1.31 1 4.29 1.34 261] 1471 606 |
BCSSTK14 1.29 | 5.19 1.26 2.78 1.53 1 7.03
GRID100 1311 4.56 1.22 267] 144 593
DENSET750 0.941 598 1.17 853 || 1171 872
BCSSTK23 || 096 570 || 097 3.21 L1t] 7.90
BCSSTK15 0971 5.71 0.94 2.82 114 1 8.04
BCSSTKIB || 0961 552 || 0.92 2.64 1.09 § 7.55
BCSSTK16 1.03 | 539 || 0.96 2.94 1.15 | 7.95
Means: | ‘
Small 1.30 | 465 1.27 268 || 1481 6.30
Large 0991 561 | 094 279 40 113 T84
Overall 1.07 {1 525 1.08 3051 124 7.27

is roughly 16% faster than the slowest. In contrast, the multifrontal method is two to three times as
fast as the right-looking method on the RS/6000. We now investigate the reasons {or the obtained
performance.

As was discussed earlier. one important determinant of performance is memory system behavior
We therefore begin by presenting memory system data for the three factorization methods in Table 4
The data 1n this table assumes a memory system similar to that of the DECstation 3100. where
the cache 1s 64 KBytes and each cache line is 4 bytes long. While the cache on the RS/6000 has
a different design and would result in different cache miss numbers, the numbers in this table wiii
still give information about the relative cache performance of the different factorization methods.
This table presents two figures for each matrix, memory references per floating-point operation and
cache misses per floating-point operation. The units on all of these numbers are 4-byte words. We
now discuss the reasons for the observed memory system numbers.

The refs-per-op numbers for the three methods can easily be understood by considering their
computational kernels. Recall that the dominant operation in each method is the emod() operation.
in which a multiple of one column is added into another. y — ax + y. In the left-looking method. this
conceptual operation is accomplished by scattering a multiple of the vector x into a full destination
vector, using the indices of entries of x to determine the appropriate locations in the full vector 10

add the entries. The inner loop therefore looks fike:

1. ftor :=1| to n do

2. ylinder{i]] = ylinder[t]] + a » 2[1]

i

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKRY FACTORIZATION

[

Table 4: References and cache misses for column-column methods, 64K cache with 4-byvte cache
lines.

Left-looking Right-looking Multifrontal

Problem Refs/op | Misses/op || Refs/op | Misses/op || Refs/op | Misses/op |
LSHP3466 4.22 0.30 4.32 0.19 3.82 v
BCSSTK14 3.88 0.39 3.99 0.43 3.53 1).392
GRIDI100 4.05 0.37 4.23 0.38 3.81 .24
DENSET50 3.57 1.00 3.04 1.04 3.03 1.05
BCSSTK?23 3.62 0.95 3.85 1.07 3.23 LO7
BCSSTK15 3.63 1.05 4.03 1.05 3.20 1.03
BCSSTKI18 3.65 1.06 1.15 1.05 3.33 LU
BCSSTKI16 3.66 0.82 1t 4.00 1.00 3.22 100§
Means: -

Small 404 5 418 0.29 372 0.22
Large 3.65 U.Y6 4.06 103 3.25 1.03
Overall 377 . 0.58 3.91 0.53 3.37 0 44

This kernel will be referred to as the scatter kernel. We assume that a resides in a processor
register and genera'es no memory traffic during the loop. Thus, for every mulitiply/add pair the
kernel loads one element of x, one index element from index, and one element from y, and writes
one element ¢f y. Assuming that the values are two-word double-precision floating-point numbers
and the indices are single-word integers, then this kernel loads 5 words and store 2 words for every
multiply /add pair, performing 3.5 memory operaticns per floating-point operation. This figure
agrees quite well with the numbers in Table 4. The numbers in the table are understandably higher
because they count all memory references performed in the entire program whereas our estimate
on’y counts those performed in the inner loop.

The inner loop for the right-looking method is significantly more complicated than that of the
left-looking method. This method adds a multiple of a vector x with non-zero structure xindex
into a destination vector y with non-zero structure yindex. A search must be done in y for the

appropriate locations into which elements of x should be added. The kernel looks like:

1. yi=1

[3]

for zi=1 to n do
while (yindez(yi] # zindez{zi]) do
yi=yi 41
vlyi] = ylyd] + a x z[zi]

oW

This kernel will be referred to as the search kernel. To perform a multiply /add. the search kernel
must load one element of x. one element of y, one element of xindex. and at least cme element of

yindex. It must also write one element of y The kernel would therefore be expected to perform

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 2

at least 8 memory references for every wultiply/add. or 1 word references for every Hoating-pons
operation. The numbers in the table are often less than this figure because of a special case i the
right-looking method. One can easily determine whether the source and destination vectors have
the same {ength. Since the structure of the destination 1s a superset of the structure of the source
the two vectors necessarily have the same structure if they have the same length The index vectaors
can then be ignored entirely and the vectors can be added together directly.

The multifrontal method has a much sunpler kernel than either of the previous two methods
Recall that the multifrontal method adds a column of the matrnix into an update column, anid the
update column has the same non-zero structure as the updating column. Thus the computational
kernel is a simple DAXPY:

1. fori=1 to n do
2. ylil = y[i] + a » {3

This kernel loads 4 words and writes 2 words for every iteration, for a ratio of 3 memuory operations
per floating point operation. The multifrontal method must also combine, or assemble. update
matrices to form subsequent update matrices. The memory references performed during assembliy
are responsible for the fact that the numbers in the table are larger than would be predicted by the
kernel.

The cache miss rates for the three methods can be understood by considering the following In
each method. some column is used repetitively. The left-iooking method modifies the destination
column by several columns to its left, while the right-looking and multifrontal methods use a source
column to modify several columns to its right. Thus. in each of the three y — ax + y kernels
from above, one of the two vectors x or y does not change from one invocation to the next. Wuh
a reasonably large cache. this vector would be expected to remain in the cache implyving that one
vector would miss in the cache per column modification. In other words, every multiply/add pair
would be expected to cache miss on one double-precision vector element. yielding a miss rate of one
word per floating-point operation.

The index vectors may appear to cause significant misses as well, but recall that adjacent columns
frequently have the same non-zero structures. These columns share the same index vector w the
sparse matrix representation. Thus, even when the miss rate on the non-zeroes 1s high. the miss
rate on the index structures is typically quite low.

Looking at achieved performance in the context of this memory system data. we see that the
o=rformance of the three method on the DECstation 3100 can be easily understood in terms of this
memory systemn data. A substantial portion (roughly 35% for the larger matrices) of the runtime
goes to servicing cache misses. Since the three methods generate roughly the same number of cache
rrusses. this cost is the same for all three. The performance differences between the miethods are due

primarily to the differences in the number of memory referenres.

[

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION

Understanding the performance of these methods on the IBM RS/6000 15 somewhat more con
plicated. Again the cache miss numbers are roughly the same. but cache miss costs play a less
important ro!" on this machine. We will see in later methods that cache miss costs can have a
significant effect on performance on this machine. but they are not as important as they were on
the DECstation 3100. More important for the column-column methods is the amount of instruction
parallelism in the computational kernels, and the extent to which the compiler can exploit 1t We
have examined the generated code and noticed the following. Firstly. the DAXPY kernel of the
multifrontal method yields extremely efficient machine code. This 1s not surprising. since this kernel
appears in a wide range of scientific programs, and it is reasonable to expect machines and compiiers
to be built to handle it efficiently. The scatter kernel of the left-looking method yields quite efficient
code as well. While this kernel is not as simple or efficient as the DAXPY kernel. it 1s stiil quite
easily compiled into efficient code. The search kernel of the right-looking method is another matrer
entirely. The kernel is quite complex. containing a loop within what would ordinarily be consid-
ered the inner loop, greatly complicating the code. This kernel meshes poorly with the available

instruction parallelism in the RS/6000. yielding a much less efficient kernel.

3.3.3 Supernode-column Methods

The previous section considered factorization approaches that made no use of the supernodal strur-
ture of the matrix. In this section. we counsider the effect of incorporating supernodal modificatinns
into the computational keruel. where the update from an entire supernode is formed using dense ma-
trix operations, and then the aggregate update is add>d into its destination. Supernodal elimination
can be easily integrated into each of the approaches of the previous section [11}].

We now consider the implercentation of supernode-column primitives. Recall that our gen-
eralized phrasing of the factorization computation identifies three primitives: Computel pdate(}.
PropagateUpdate(). and Complete(). For a particular set of primitives. the same Computel’ pdate()
can be used for the left-looking, right-looking and multifrontal approaches. The Propagatel pdate{}
primitive will differ among the three.

We begin by briefly describing the implementation of the update propagation step. Recall that
this step begins once the update from a supernode to a column has been computed The update has
the same structure as the source supernode. As a result, the propagation steps for the left-locking.
right-looking, and multifrontal supernode-column approaches are quite similar to the corresponding
column-column modification operations. Note that this does not imply that the overall performance
of the supernode-column and columan-column methods will be similar. The propagation primitives
i the supernode-column methods occur much less frequently than the modification kernels 1 the
column-column methods, so they have a much smaller impact on performance

We now turn our attention to the (Computel pdate() step. a step that is common among the

three methods. In fact, to make the three methods more directly comparable, we use the nlentical

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION]

code for each. Recall that the update from a supernode to a column is computed using a dense
rank-k update, where the A vectors used in the update are the eolumns of the source supernode

below the diagonal of the destination. The basic kerne] appears as follows

1. for k=1 to K do
2. for 1= 1 to n do

3. yli] = yli] + ax = £eli)

Each column r; is successively added into the destination y This kernel would be expected 1.,
load 3 words for every floating-point opetation, since the inner loop is a DAXPY dentical 1o the
kernel of the column-column multifrontal method. However. the number of memory references can

be significantly decreased by unrolling the loop [15] over the modifying columns. as follows:

1. for k=1 to K by 2 do

2. for i=1 to n do

3. (i) :y[i]-{-ak*zk[i]-{-a”, » Ip i)

The above loop uses 2-way unrolling. Each iteration of the inner loop now lnads two elements
of x, one element of y. and stores one element of y. The code would also perform 4 floating-point
operations on this data. This gives a ratio of 2 memory operations per floating-point operation in
general, a u-way unrolled loop would perform u + | double-word loads. 1 store. and 2u floating:
point operations per iteration. for a ratio of 1 + 2/u memory references per operation. Of course
there is a limit to the degree of unrolling that is possible or desirable. Since the values a; must
be stored in registers to avoid memory traffic in the inner loop, the degree of unrclling 1s hmited
by the number of registers available in the machine. Unrolling also expands the size of the code
possible causing extra misses in fetching instructions from the instruction cache. Furthermore the
benefits of unrolling decrease rapidly beyond a point. For example. sixteen-way unrolling generates
only 10% fewer memory references than eight-way unrolling. We perform eight-way unrolling in our
implementation. Ideally, a ratio of 1.25 references per operatinon would be obtained.

In Table 5 we present performance numbers for the three supernode-column methods We alx.
present summary information for these methods and the column-column methods of the previcus
section in Table 6. In compating these performance numbers we see that the supernode-rolumn
methods are significantly faster than the column-column methods, ranging from 30% faster for the
muitifrontal method on the IBM RS/6000. to more than 3 times faster for the nght-looking method
on the IBM RS/6000. We also see that the performance of the three supernode-column methods i~
quite similar. In particular, the overall performance on the RS/6000 differs by less than 3% amvng
the three methods. To better explam these performance numbers. we present memory reference and

cache miss numbers for these three methods in Table 7. We also present memory reference summan

CHAPLER

Table fo Mean performance numbers on DECstation 3100 and 1IBM RS/6000 Maodel 321

NEQUFENTIAL SPARSE « HOLESRY FACTORIZATION

durnn methods

4 D ECstanon 3100 and TR RS feaa M.

T e LRy

Kight biw ’".R.UH{

Multifrontal

o TUNMEPLOPS TTTTELOPS MELOPS
DEC IBM © DEC T IBM T DEC T IBM
CLSHPRanr U R TN T I B I IR
BOSSTRi4 . 207 R I N K G IR NI
GRIDUsg 0 Dsx T8 2ay 0 T2T i uh s
DENSET S Unu 12el 0 1700 12xu b Tox o 1242
BOSSTRIS . Uas H L4 D~ Wdd g 170 1] e
BUSSTR & [fn 1031 . Luat . 090 0 1s8 11 95%
BOSSTRIN © D50 1024 0 Iy wup o 150 1o s
BOSSTRIA & A6 1003 215 1tul g 202 1isl:
“Means i i
Small P 760 25y THY G 2000 7T
Large a3 TosL | 196 1020 1%5 . (10
Overall UTH4 O usl D20 a3h I X6 u5h

. Left-looking v Right-looking | Multifrontal
: MILOPS MFLOPS MFLOPS |
" Method L DECCIBM 8 DEC - IBM DEC | IBM
“mall)i i \ I
- Columneeolumn P30T 4R T 127 T 26K [T [4N 630,
¢ Supernede-column ;199 IR THY L 200 T
. Large RE i
_ Uoluma-calumn Lo bua oG8 RS S Y 113 7 R4
Supernode-column 163 | 11 »] 199 0 1020 RN RLEL
Oiverald ! ;
Column-column RS 7 305 P24 0 727
\u;mrnruiiwnltun_n_ LT unl s g 430 1 %ﬁi Y hh

H
3

{s

-

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION =

Table 7: References and cache musses for supernode-column methods. 84K cache with §-byte cache
lines.

Left-looking Right-looking Multifrontal

Problem Refs/op | Misses/op || Refs/op | Misses/op || Refs/op | Misses/op
LSHP3466 || 2.6l 0.25 2.35 U Uy 2.6% U7
BCSSTKI14 | 2.05 0.39 192 b 08 214 e
GRID100 2.32 0.37 2,17 0.09 2.60 Uiz
DENSET50 1.30 1.05 127 1.04 1.30 105
BCSSTK23 1.57 0.98 157 081 163 1) &6
BCSSTR15 1.53 0.94 151 0.71 157 075
BCSSTKIS 1.70 0.96 1.72 0.69 178 07T

» BCSSTK16 1.67 0.37 1.63 053 1.66 0.59
Means: T -
Small 2.30 0.32 2.13 0.09 2.45 017
Large l. J.92 1.62 0.63 1.67 069
Overall 1.76 0.55 1.71 0.20 181 133

intormation in Table 8.

Before analyzing the behavior of these methods. we make a brief observation about the mult-
frontal and left-looking supernode-column methods. When these methods are compared. one of the
most frequently stated performance advantages of the multifrontal met® -4 [17] is its reduction
indirect addressing, and one of the most frequently stated disadvantages 1s that it performs more
floating-point operations. We note that these two points of comparison are actually deseribing the
advantages and disadvantages of supernodal versus nodal elimination. Recall that in both the left-
looking and multifrontal methods, an update is computed from an entire supernode to a rolumn
The resulting update must then be added into somie destination. In the multifrontal method. the
update 1s scattered into the update matrix of the parent supernode in the assembly step. In the
left-looking supernode-column method, the update is scattered into z full destination vector. In
each method, these are the only indirect operations that are performed. and this is virtually the
only source of extra floating-point operations. Thus. the two methods are almost entirely equivalent
1a *erms of indirect operations and extra floating-point operations.

Returning to the memory reference numbers, an important thing to note is that the numbers for
the supernode-column methods are significantly lower than those for the column-column methods
{see Table 8). Depending or the problem and the method, the number of references has decreased
to between 45% and 55% of their previous levels. This decrease is due to two factors First.
the supernode-column methods access index vectors much less frequently. Second. the supernodal
methods achieve improved reuse of processor registers due (o loop unrolling For the left-lonking
method, we find that the reduced index vector accesses bring references down to roughly 90% of

their previous levels. The loop unrolling accounts for the rest of the decrease.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 24

Table 8: Mean memory references and cache misses per floating-point operation. References are 1o
4-byte words. Cache 1s 64 KBytes with 4-byte lines.

Left-looking Right-looking Multfrontal

Method Refs/op | Misses/op || Refs/op | Misses/op [[Refs/op | Misses/op
Small:

Column-column 4.04 0.35 $.138 .29 3.72 SO
Supernode-column 2.30 0.32 2.13 0.09 2.45 1y
Large: :
Column-column 3.65 0.96 1.06 1.03 3.25 1.03
Supernode-column 1.63 0.92 1.62 0.63 1.67 069 !
Overall:
Column-column 377 0.58 3.91 0.53 3.37 U
Supernode-column 1.76 0.5 1.71 0.20 1%} 0.33

Something else to note is that the references per operation numbers are well above the 1.25 1deal
number. The reason is simply that not all supernodes are large enough to take full advantage of the
reuse benefits of supernodal elimination.

Regarding the cache performance of the three methods, we also notice an interesting change.
The cache miss numbers for the left-looking method have remained virtually unchanged between the
column-column and supernode-column variants. The numbers for the right-looking and multifrontal
methods, on the other hand. have decreased significantly. This fact ca be understood by considering
where reuse accurs in the cache. In the left-looking column-column method. the data that is reused 1s
the destination column. [n the supernode-column left-looking method. this reuse has not changed
The destination column is expected to remain in the cache, and the supernodes that update it
are expected to miss in the cache, again resulting in a miss rate of approximately one word per
floating-point operation.

In the right-looking and multifrontal methods, updates are now produced from a supernode to
severatl destination columns. The itemn that is reused is a supernode. We see three possibilities for
the behavior of the cache, depending on the size of the supernode. If the supernode contains a
single column. then the supernode is expected to remain in the cache and the destination column is
expected to cache miss, resulting in one miss per floating-point operation. If the supernode contans
more than one column but is smaller than the cache. then the supernode is again expected to reman
in the cache, and the destination is expected to miss. However. many more floating-point operations
are now being performed on each entry in the destination. In particular, if ¢ columns remain 1 the
cache. then we perform ¢ times as many operations per cache miss. The third possibility. where the
supernode is much larger than the processor rache, would cause the destination column to remam
in the processor cache while the supernode update is being computed. as would happen in the left.
looking methad. The result is one miss per floating-point operation. The cache miss numbers 1

Table 8 indicate that the case where a supernode fits in the cache occurs quite frequently. resulting

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 3

in significantly fewer misses than one miss per Hoating-point operation overall

Returning to the performance numbers (Table 5), we note that the nght-looking method s now
the fastest on the DECstation 3100, and the left-looking method is the slowest. The primary cause oof
the performance differences is the cache behavior of the various methods. The right-looking method
generates the fewest misses, and is therefore the fastest. Similarly. the left-looking method generates
the most and is the slowest. On the RS/6000. the left-locking and right-looking methods execute at
roughly the same rate. While the right-looking method has the advantage of generating fewer cache
misses, it has the disadvantage of the inefficient propagation primitive.

One thing to note regarding memory system behavior for the supernode-column methods and
indeed for all the methods we consider is that the multifrontal approach has an important disad
vantage in comparison to the other two approaches: it performs more data movement. This 1s due
to two subtle differences between it and the other approaches. The first 1s in the approaches used
to determine the final values of a column. The multifrontal method gathers all updates to a column
into an update matrix, adds the original values of that colurnn into the update matrix. computes the
final values, and then copies these values back into the storage for the column. The left-looking and
right-looking approaches add updates directly into the destination column. thus avoiding this data
shuffling and reducing the amount of data movement. The other difference relates to the manner
in which supernodes containing a single column are handled. The process of producing an update
matrix for a single column and then propagating it is significantly less efficient than the process
used in, for example, the column-column left-looking method, where the update 1s computed and
propagated in the same step. In the left-looking and right-looking methods, we can fall back to the
column-column kernels for supernodes containing only a single column. This option does not exist
for the multifrontal method. Because of these two differences, the multifrontal method wili produce

more memory references and more cache misses than might otherwise be expected.

3.3.4 Column-supernode Methods

The supernode-column primitives of the previous section took advantage of the fact that a single
destination is reused a number of times in a supetnode-column update operation to increase rense
in the processor registers. They also took advantage of the fact that every column in the source
supernode had the same non-zero structure to reduce the number of accesses to index vectors. A
symmetric set of primitives, where a single column is used to modify an ent're supernode. would
appear to have similar advantages. We briefly show in this section that while the advantages are
qualitatively similar, they are not of the same magnitude.

Consider the implementation of a column-supernode (Computel pdate() primitive. A column

would be used to modify a set of destinations, appearing something like:

1. for j=1 to J do

2. for :t= 1| to n do

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 31

3. yilt] = yli] + a) = 2[1]

Unrolling the j loop by a factor of two yields:

tor j=1 to J by 2 do
for i1=1 to n do

1

2

3. wlil = 1] + oy + 2

4 Y+l = v (1] + a0 % 2[d]

The inner loop loads two entries of y. one entry of x, and stores two entries of y. for a total of
5 double-word references to perform 4 floating-point operations. In general, a loop that is unrolled
u ways loads u entries of y, one entry of x, and writes u entries of y to perform 2u floating-point
operations, for a ratio of 2 + 1/u memory references per floating-point operation. This ratio is stifl
more than two-thirds of the ratio obtained without unrolling, and double the ratio obtained by
unrolling the supernode-column primitive (Recall that this ratio was 1 +2/u references per floating-
point operation.). Thus, while column-supernode primitives realize some advantages due to reuse of
data. they are not nearly as effective as supernode-column primitives. We therefore do not further

study such methods.

3.3.5 Supernode-pair Methods

[n this section, we consider a simple modification of the three supernode-column factorization meth-
ods that further improves the efficiency of the computational kernels and also reduces the cache miss
rates. These improvements will be accomplished through the use of supernode-pair primitives that
modify two destination columns at a time.

Devising factorization methods that make use of supernode-pair primitives is quite straightfor-
ward. For all three approaches, the Computel’ pdate() primitive involves a pair of simultaneous rank-
k updates, using the same vectors for each update. To handle update propagation in a left-looking
method, we maintain two full vectors. one for each destination column. and use the supernode-
column left-looking propagation primitive to update each. The bookkeeping necessary to deternune
which supernodes modify both current destinations, and which modify only one or the other is
not difficult. The right-looking and multifrontal methods are also quite easily modified. In both,
we simply generate the updates to two destination columns at once. In the right-looking method.
the two updates are propagated individually using the supernode-column right-looking propagation
primitive.

The Computel pdate() step in a supernode-pair method looks like the following:

1. for k=1 to K do

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 32

2. for 1 =1 to n do
yilt) = yi{s) + are s i
4. yg{i} = yg[i] + a2y« zk[i}

A set of A" source vectors r; are used to modily a pair of destination vectors y, This kernet can

be unrolled, producing:

1. for k=1 to k£ by 2 do

2 for i=1 to n do

3. nlil = nll v ave s zeli) + argpy * e fi)
4

voli] = wali] + ave = 2e(i] + anpyy * Ty [d]

(C'ounting memory references, we find that 2 entries of r and one entry of each y are loaded
and one entry of each y is stored during each iteration. Each iteration performs 8 floating-point
operations. Thus, a ratio of 1.5 memory reference per operation is achieved. In general. by unrolling
u ways we achieve a ratio of 1/2 + 2/u memory references per operation, which is half that of the
supernode-column kernel. As it turns out, the ratios are not directly comparable. The degree of
unrolling is timited by the number of available registers, and the supernode-pair kernel uses roughly
twice as many registers as the supernode-column kernel for the same degree of unrolling. The
net effect is that on a machine with 16 registers, like the DECstation 3100, we can perform 5-byv-1
unrolling (8 source columns modify one destination column}, for a memory reference to floating-point
operatior ratio of 1.25, or we can perform 4-by-2 unrolling, for a ratio of 1.0. On the IBM RS/6000
which has 34 double-precision registers, the difference in memory references is significantly iarger
We can perform 16-by-1 unrolling, for a ratio of 1.125, or we can perform 8-by-2 unrolling. for a ratio
of 0.73. Another important advantage of creating two updates at a time is that each iteration of
the loop updates two independent quantities. y;[i] and y»(i]. leading to fewer dependencies hetween
operations and thus increasing the amount of instruction-level parallelism.

We now present performance figures for the three supernode-pair methods (Table 9). using the
identical supernode-pair kernel for each. We also present memory system data for the three methouds
in Table 10. The memory reference numbers are for a machine with 32 double-precision fleating-
point registers. These numbers are estimates, obtained by compiling the code for a machine with
16 registers and then removing by hand any references that we believe would not be necessary if
the machine had 32 registers. We believe these numbers are more informative than numbers for a
machine with {6 registers would be, since reference numbers for the latter would be quite similar tn
those of the supernode-column methods. Also. the trend in microprocessor designs appears to he
towards machines with more floating-point registers.

In Tables 11 and 12 we present summary information. comparing supernode-pair methods with

the methods of previous sections. The performance data shows that supernode-pair methods give

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 3

Table 9
320

Performance of supernode-pair methods on DECstation 3100 and {BM RS/6000 Maoded
i Left-looking || Right-looking | Multfrontal
MFLOPS MFLOPS MFLOPS
Problem || DEC | 1BM || DEC | IBM || DEC | IBM
LSHP3466 1.95 7.86 237] %01 1.95 771 -‘
BCSSTK14 228 |1 11.74 3.08 11.39 2521 12,36
GRID100 2.05 R.90 2.72 %.29 2.02 R 37
DENSET50 || 246 | 2013 || 254 2085 || 247] 1965 |
BCSSTK23 221§ 16.20 2484 1417 226 | 15R85
BCSSTKI5 2729 | 16.77 2,68 | 1557 247 1 16,96
BCSSTKIS 2.08 1 14.30 246 | 11.82 2.16 | 14.2¢
BCSSTK16 2221 1592 2821 1559 2.57 1 16.67
| Means:]
Small 2.08 9.24 277 9.00 2.14 909
Large 2.19 | 15.59 2.64 14.09 239 | 1585
Overall 218 1 12.73 266 | 12.03 228 | 1263

Table 10: References and cache misses for supernode-pair methods, 64K cache with 4-hyte rache

fines.

Left-looking Right-looking Multifrontal

Problem Refs/op | Misses/op || Refs/op | Misses/op || Refs/op | Misses/op

LSHP3466 2.08 0.21 177] 0.09 2.06 D17
BCSSTK14 1.50 0.29 1.38 0.08 1.56 D16
GRIDI100O 1.85 0.28 1.64 0.09 2.02 017
DENSET750 0.80 .55 0.77 0.54 0.80 0,56 |
BCSSTK?23 1.06 .56 1.05 0.44 1.09 0al
BCSSTK15 1.03 0.54 1.00 0.39 1.04 044 j
BCSSTK18 1.2] 0.57 1.19 0.40 1.24 4% |
BCSSTK16 1.13 0.53 1.08 0.30 110 036 |
Means: || M i
Small 178).26 1.58 0.08 1 85 017 "
Large 1.12 0.55 1.08 .36 112 42
Overall ! 1.22 039 1.15 0.16 | 1 24 £ IN

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION iR}

Table 11: Mean performance numbers on DECstation 3100 and IBM RS/6000 Mode] 320

[Left-locking f Right-looking j| Mulufrontal
MFLOPS MFLOPS MFLOPS

Method DEC | IBM || DEC | IBM DEC | 1BM
Small: i
Column-column 130) 465 || L2v] 2680 1457 630
Supernode-column 1.94 7.60 2.59 769 2007 757
Supernode-pair 2081 924 2.7 900 214, 909

{ Large: 1)
Column-column 0991 361§ 094 2790 1137 784!
Supernode-column 163 81 1991 10.20 1.85 | 11.08
Supernode-pair 2.19 | 1559 264] 14.09 2.39 | 1585
Overall:
Column-column 1.07 | 5.25 1.08 3.05 124 | 7.27
Supernode-column 1.74 1 951 210 9.30 1.86 1 455
Supernode-pair 218 | 12.73 266 12.03 228 4 1263

significantly higher performance than the supernode-column methods The performance increase 1s
between 20% and 30% over the entire set of benchmark matrices for both machines, with an increase
of 30% to 45% for the larger matrices. The memory reference data of Table 12 indicate that the
practice of modifying two columns at a time is quite effective at reducing memory references. For all
three methods. the memory reference numbers are roughly 30% below the corresponding numbers
for the supernode-column methods. The supernode-pair numbers are above the ideal of 8.75. but
they are still quite low.

The cache miss numbers for the supernode-pair methods are substantially lower as well. For
example, the numbers are 30% lower for the left-looking method. This difference can be understood
as follows. In the left-looking supernode-pair method. a pair of columns is now reused between
supernode updates. When a supernode is accessed, it will typically update both columns. thus
performing twice as many floating-point operations as would be done in the supernode-column
method. The cache miss numbers for the right-looking and multifrontal methods have improved by
roughly 15%, not nearly as much as they did for the left-looking method. Recall that we described
the cache behavior of these methods in terms of the sizes of the supernodes relative to the size of the
cache. Of the three cases we outlined. only the case where the supernode is larger than the cache
benefits from this modification. We note that the right-looking and multifrontal cache miss rates
are still significantly lower than the left-looking numbers.

Thus, the performance for supernode-pair methods can be explained as follows. The performance
gains from the supernode-pair method on the DECstation 3100 are due mainly to the reduction
in cache miss rates. We note that the right-looking method has the lowest miss rate of the three

methods, and achieves the highest performance as weil. Recall that the decrease in memory references

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 35

Table 12: Mean memory references and cache misses per floating-point operation. References are 1o
4-byte words. (Cache is 64 KBytes with 4-byte lines

Left-looking Right-looking Multifrontal 7

Method Refs/op | Misses/op || Refs/op 1 Misses/op || Refs/op » Misses/op -
! Small: T

Column-column 404 0.35 4.18 0.29 3.72 h22
Supernode-column 2.36 .32 2.13 0.09 245 017
Supernode-pair 1.78 0.26 1.58 0.08 1.85 017
Large: s
Column-column 3.65 .96 4.06 1.03 3.25 1.03
Supernode-column 1.63 0.92 1.62 0.63 1.67 .69
Supernode-pair 1.12 0.55 1.08 0.36 1.12 0.42
Overall:
Column-column 3.77 0.58 3.91 0.53 3.37 0.44
Supernode-column 1.76 0.55 1.71 0.20 1.81 0.33
Supernode-pair 1.22 0.39 1.15 0.16 1.24 0.2%8

is not as relevant for the DECstation 3100, since the numbers we give assume a machine with J2
registers. The 16 registers of the DECstation limit the memory reference benefits of updating a
pair of columns at a time. The performance gains on the IBM RS/6000 are due to three factors.
First. the number of memory references has been significantly reduced. Second. the supernode-pair
kernel updates two destinations at once in the inner loop, allowing for a greater degree of instruction
parallelism. Finally, the supernode-pair method decreases the number of cache misses. The overall
result is a 40% increase in performance for the larger matrices. Unfortunately. we are unable to

isolate the portions of the increase in performance that come from each of these three factors.

3.3.6 Supernode-supernode Methods

An obvious extension of the supernode-pair methods of the previous section would be to consider
methods that update some fixed number (greater than 2) of columns at a time. Rather than further
investigating such approaches, we instead consider primitives that modify an entire supernode by
another supernode. Such primitives were originally proposed in [11]. By expressing the computation
in terms of supernode-supernode operations, the Computel’ pdate() step becomes a matrix-matrix
multiply. This kernel will allow us to not only reduce traffic between memory and the processor
registers through unrolling, but it will also allow us to block the computation to reduce the traffic
between memory and the cache. The use of supernode-supernode primitives to reduce memory
system traffic in a left-looking method has also been independently proposed in {36] We use a

simple form of blocking in this section. We discuss alternative blocking strategies in a later section

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 36

N

Figure 7: The CompleteSuper() primitive.

Implementation of Supernode-supernode Primitives

We begin our discussion of supernode-supernode methods by describing the implementation of the
appropriate primitives. beginning with the Complete() primtive. Expressed in werms of the columns

of the supernode, the Complete{) primitive performs the following operations:

1. for j=1 to n do

2 for k=1 to j—1do
3. cmod(y, &)

4 cdiv(j)

It will also be informative to consider the implementation of this and all other primitives in ths
section in terms of dense submatrices. An equivalent description of this computation. in terms of

such submatrices, would be:

1. A~ Factor(A)
2. B~ BA™!

where A is the dense diagonal block of the supernode, and B is the matrix formed by condensing
the sub-diagonal non-zeroes of the supernode into a dense matrix (see Figure 7). We note that the
primitives in this section will all be implemented in terms of columns of the matrix, but we will lock
al blocking approaches that are based on dense submatrix computations 1n a later section.

One thing 1o note about the above computation is that the inverse of A 1s not actually computed
in step 2 above. Since A4 is triangular, the second step is instead accomplished by solving a sequence

of triangular systems. This step can be done in-place. Another thing to note 1s that the eatire

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 35

10

Update

Figure 8: The ModifySuper BySuper() primitive.

operation can be performed without consulting the indices for the sparse columns that comprise the
supernode. The whole cemputation can be done in terms of dense matrices.

The Computel pdate() and Propagatel/pdate() primitives are significantly more complicated
than the Complete() primitive. The Computel’pdate() primitive produces a dense trapezoidal
update matrix whose non-zero structure is a subset of the non-zero structure of the destination
supernode. The Propagatel’ pdate() primitive must then add the updave matrix into the destination
supernode.

The Computel’ pdate() step involves the addition of a multiple of a portion of each column in
the source supernode into the update matrix. The operation can be thought of in terms of dense
submatrices as follows. Assume the destination supernode is comprised of columns dy through o
The only non-zeroes in the source supernode that are involved in the computation are those at or
below row d;. These non-zeroes can be divided into two sets. The first is the matrix " of Figure X.
corresponding to the non-zeroes in the source supernode in rows d; through d;. The second 1s the
matrix D, corresponding to the non-zeroes in the source supernode in rows below d;. The npper
portion of the update matrix is created by multiplying ' by C7. Since the result is symmetric. only
the lower triangle is computed. The lower portion of the update matrix is created by multiplying D
by CT.

Both the Complete() and Computel’pdate() primitives can easily be blocked to reduce the
cache miss rate. We perform a simple form of blocking in this section. Each supernode of the
matrix is partitioned into a set of panels, where a panel is a set of contiguous columns that fits
wholly in the processor cache. When a ("omputel/pdate() operation is performed. the cache s
loaded with the first panel in the source supernode. and all of the contributions from this panel

to the update are computed. The operation then computes contributions from the next panel

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION RE

and so on. The contributions from an individual panel are computed using the supernode-pair
Computel’ pdate() primitive repetitively. In other words. an update 1s computed from the panel t
each pair of destination columns. A similar scheme 1s employed for the Complete() primitve This
panel blocking 1s appealing because it is probably the simplest and most intuitive to implement We
will conaider slternatinve blocking strategies in 5 subsequent section.

Once the update matrix is computed. the next step is propagation. where the entries of tne
update matrix are added into the appropriate locations in the destination supernode. In general.
the update matrix contains updates to a subset of the columns in the destination supernode. and
to a subset of the entries in these columns. The determination of which columns are modified 1
trivial. This information is available in the non-zero structure of the source superncde. The more
difficult step involves the addition of a column update into its destinaticn column. To perfarm this
addition efficiently, we borrow the relative inder technique [7, 42]. The basic idea is as follows. For
each entry in the update column, we determine the entry in the destination column that is modified
by it. This information is stored in relative indices. If rindez[i] = j, then the update in row i of the
source should be added into row j in the destination. Since ail of the columns in the update matrix
have the same structure, and all of the destination columns in the destination supernode have the
same structure, a single set of relative indices suffices to scatter the entire update matnx into the
appropriate locations in the destination.

The only issue remaining is the question of how these relative indices are computed. The pro-
cess of computing relative indices is quite similar to the process of performing a column-column
modification. The main difference is that in the case of the modification. the entries are added into
the appropriate locations, whereas in the case of computing indices, we simply record where those
updates would be added. We therefore use quite similar methods. Note that once these indices have
been computed, the left-looking and right-looking approaches can use the same code to actually
perform the update propagation.

One important special case that is treated separately in both of these methods is the case of a
supernode consisting of a single column. As we discussed earlier, the process of computing a large
update m.atrix from a single column to some destination and then propagating it results in an increase
in memory references and cache misses. A more efficient approach adds the updates directly into
the destination supernode. It is relatively straightforward to implement such an approach. once the
appropriate relative indices have been computed. The implementation involves a small modification
to the supernode-supernode update propagation code, where instead of adding an entry from the
update matrix into the destination, the appropriate update is computed on the spot and added into
the destination. This special case code is again shared between the left-looking and right-looking
methods.

We have implemented left-looking, right-looking. and multifrontal supernode-supernode meth-

ods, again using the identical Computel pdate() rcutine for each. Any performance differences

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 3

Table 13: Performance of supernode-supernode methods on DECstation 3100 and IBM R&/6G06
Model 320.

Left-looking || Right-looking {| Mulufrontal
MFLOPS MFLOPS MFLOPS

Problem DEC [IBM | DEC | IBM || DEC [IBM
LSHP3466 234 79611 240 794 1.87 1 5.95
BCSSTKI4 || 3.05| 1363} 3.10 | 1351 250) 11.97
GRID100 249 | 386 | 2.56 8.51 1871 7.02
DENSET750 3.75 | 2277 || 3.83 | 22381 3.68 1 21.3%
BCSSTK23 | 3.34 | 19.20 || 3.34 | 1850 297 | 17.34
BCSSTKI5 || 3.52 | 2050 {| 3.57 | 20.01 317 1 18.55
BCSSTKI8 i 3.07 [1598 || 3.02 | 15322 }f 261 | 1454
BCSSTKI6 || 3.41 | 19.36 || 347] 19.14 || 3.12 | 18.21

Means:

Small 259 962 2.66 9.45 204 | &.11
Large 3321840 334 1787 | 294 16.89
Overall 3.05 | 14.01 309t 13.72 258 1 12.27

between the three approaches are due entirely to three differences between the methods. First. the
relative indices are computed in different ways. Second, the multifrontal method performs more data
movement. And finally, the methods execute the primitives in different orders, potentially leading

to different cache behaviors.

Performance of Supernode-supernode Methods

We now present performance numbers {or the supernode-supernode methods. Table 13 gives factor-
1zation rates on the two benchmark machines, and Table 14 gives memory system information. We
present comparative information between these and previous methods in Tables 15 and 16. These
tables show that the performance of the supernode-supernode methods is again higher than that of
the previous methods, giving performance that is 10% to 40% higher than that of a supernode-pair
method on the DECstation 3100 over the whole set of benchmark matrices, and 0% to 10% higher
on the IBM RS/6000. For the larger matrices, supernode-supernode methods are 20% to 30% faster
on the DECstation. and 5% to 20% faster on the IBM.

Moving to the cache miss information, we note that the miss rates for the three methods are
similar, and in all cases they are substantially lower than those achieved by the supernode-pair
methods. For the larger problems, miss rates have decrease by a factor of more than 2 for the right-
looking and multifrontal methods, and by a factor of more than 3.5 for the left-looking method The
reason is the effectiveness of the blocking at reducing cache misses.

The cbserved petrformance can therefore be explained as follows. For the larger problems. the

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 1

Table 14: References and cache misses for supernode-supernode methods. 64K cache with d-byte
cache lines.

Loft-looking ' Right-luoking i Mufufrontal
Problem Refs/op ¥ Misses/op | Refs/opI Misses/op i Refs/op 1 Misses/op |
LSHP3466 1.85 | 0.13 1.80 0.11 2,27 017"
BCSSTK14 1.36 0.11 1.35 0.11 1.59 § Uiy
GRIDI100 1.74 0.13 .68 011 2.22 NI
DENSET50 0.81 016 0R] 016 0.84 01T
BCSSTK23 1.03 0.17 1.03 0.17 112 0.22
BCSSTKI15 0.99 0.14 0.99 0.14 1.07 nls
BCSSTK18 1.16 0.19 1.16 0.19 1.29 0.25
BCSSTK16 1.06 0.13 1.U06 0.14 1.12 4 iR
Means: R
Small 1.62 0.12 1.58 0.11 1.96 0.17
Large 1.07 0.15 1.06 0.15 1.15 0.20
Overall 1.16 0.14 1.16 0.14 1.26 0.1R

Table 15: Mean performance numbers on DECstation 3100 and IBM RS/6000 Model 320.

Left-looking || Right-looking || Multifrontal

MFLOPS MFLOPS MFLOPS
Method DEC | IBM || DEC | 1BM || DEC | 1BM
Small:
Column-column 1.30 | 4.65 1.27 2.68 1.48 | 6.30
Supernode-column 1.94 1 7.60 2.59 7.69 2001 757
Supernode-pair 2081 924 2.77 9.00 || 2.147 9.09
Supernode-supernode 259 986 266 9.45 2041 811
Large:
Column-column 0.99 | 561 (.94 2.79 13] 7.34
Supernode-column 1.63 1 10.81 1.99 1 10.20 1.85 1 11.08
Supernode-pair 2,19 11559 |1 264 | 1409 239{ 15.85
Supernode-supernode 33211840 | 334 17874 294 1689
Overall:
Column-column 1071 525 1.08 3.05 P24 7.27
Svpernode-column 1.74 9.51 2.10 9.30 186 [9.55
Supernode-pair 218 1 1273 || 266 | 12.03 228 1 12.63 1
Supernode-supernode 3051 1401 3000 13724 258 1227,

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION N

Table 16: Mean memory references and cache musses per ontmg-poant vperation Referenoes are 10
4-byte words. Cache 1s 64 KPytes with 4-byte lines.

| Left-looking Right-looking i Mulrifeanrad
Method 1 Refs/op i Misses/op Refs/ap - Muses;op 0 Refs/op T Misses
Small: i} |
Column-column 1.04 .35 41X ey o 3T LI
Supernode-column 2.30 U 32 2430 s R
Supernode-pair | 78 026 EYE IXCE x5 T
Supernode-supernode 1.62 .12 Lox LR L .
Large: ! f)
Column-column 365 0.9¢€ 106 R e
Supernode-column 1.63 0.92 162! 083 167 ik
Supernode-pair 1.12 0.35 1.08 036 112 42
Supernode-supernode 1.07 0.15 106 | 013 HEER 020
Overall. 1
Column-column 377 .5 3.9l 53 3.37 UEE]
Superncde-column 1.76 0.55 L7 020 1 R1 33
Supernode-pair 1.22 0.39 115 016 1.24 2R
Supernode-supernode 1.16 014 116 g 14 129 toix

ca~he miss rates have decreased dramatically. leading to higher performance For the sinaller prods
lems. performance in many cases has decreased. because the eflort spent searching for opportunities
to increase reuse 15 wasted. Overall. supernode-supernode methods significantly increase perfor

mance over supernode-pair methods.

3.3.7 Supernode-matrix Methods

We now consider methods based on primitives that produce updates from a single supernode to the
entire remainder of the matrix. The multifrontal method 1s most frequently expressed i terms of
such primitives {see, for example. {1]). One thing to note about supernode-matrix methods i~ tha
they are all right-looking. We therefore are restricted to two different approaches. nght-looking an
multifronts!.

Before discussing the implementation of supernode-matrix primitives. we note that the Compders i
and Computel pdate() primitives are typically merged into a single operation. The final values of
the supernode are determined at the same time that the updates from the supernode to the res
of the matrix are computed. Qur implementations perform these as a single step as well. but cur
discussion 1s simplified if we consider them as separate steps

We now briefly discuss the implementation of supernode-matrix primitives. The implenenta
tion of Computel’ pdate() is relatively straightforward. The trapezoidal update matrix from the

supernode-supernode rthods becomes a lower triangular matnx. This update matrx s computed

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 12

Table 1T Performance of supernode-matrix methods on DECstation 3100 and 1BM RS/6000 Moded
320.

Right-looking i Mulufrontal

MFLOPS | MFLOPS !
Problem DEC [IBM |' DEC | IBM !
LSHP3466 243 x.33 1.96 769 |
BCSSTRI4 §f 308 1 1356 | 254 [1258
GRIDI00 259 Y06 [2031 843
DENSET50 || 385 223810 36312129
BCSSTK23 3.32 1 18.63 294 1 1777
BCSSTRI5 || 352 2016 || 3.02 | 1K8.85
BCSSTKIZ || 301§ 1563 265 1552
| BCSSTKI16 3421 1926 3.14) 1853

Means:

Small 2.67 9.36 2.15 9.14
Large 3.30 18.13 2921 1750
Overall 309 1410 2.63 1 13.27

by performing a symmetric matrix-matrix mulitiplication. " = BBT where B is the portion of the
source supernode below the diagonal block. Since the result mateix € s symmetnic only the lower
triangle is computed. We use the same panel-based blocking as we did for the supernode-supernods
methods to teduce cache misses.

The propagation of the update matrix for the right-looking method 1s done using the propagation
code from the right-looking supernode-supetnode method. In fact. the superrode-supernode and
supernode-matrix right-looking methods are nearly identical. The difference is in the order in which
primitives are invoked. In the supernode-supernode method. the update to a single supernode s
immediately added into the destination. In the right-looking supernode-matrix method. the updates
from a single supernode to all destination supernodes are computed. and then these updates are
propagated one at a time to the appropriate destination supernodes.

In Table 17 we present performance numbers for the supernode-matrix schemes. and 1 Table %
we present memory system information. We present comparative information tn Tables 19 and 20)
Surprisingly. the performance of the supernode-mateix methods is quite similar to the perfarmance
of the corresponding supernode-supernode methods.

One would expect that in moving {rom an approach that produces updates from a supernode
to a single destination supernode to an approach that produces updates from a supernode to the
entire rest of the matrix. the amount of exploitable reuse would increase significantly The meniory
reference figures in Table 18 indicate that this is not the case. A number of factors account for the
lack of observed increase. The most important factor has to do with the relative sizes of supernode-
matrix and supernode-supernode updates. Specifically. a single supernode-matrix update typieatly

corresponds to a small number of supernode-supernode updates. Therefore. little reuse 15 lost

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 1

Table 18: References and cache misses for supernode-matrix methods, 684K vache with -byvie cache
lines.

Right-looking Mulufrontal

Problem Refs/op | Missesjop || Refs/op [Misses/op |
LSHP3466 1.75 0.1l 208 1 U117
BCSSTR 14 1.33 0.12 156 U6
GRID100 1.64 012 203 Uiv
DENSE7350 0.31 016 0 %4 0.17
BCSSTK?23 1.02 0.1% 111 02t
BCSSTK15 0.958 0.15 1.06 0i7
BCSSTK13 114 v.19 ! 126 U.24
BCSSTK16 106 0.14 | 111 017
Means:

Small 1.55 0.12 1.%6 017
Large 106 0.16 114 019
Overatl 115 014 126 018

Table 19: Mean performance numbers on DECstation 3100 and IBM RS/6000 Muodel 324

Left-locking {| Right-looking | Multifrontal

MFLOPS MFLOPS MFLOPS
Method DEC | IBM [DEC | IBM [DEC | IBM
Small:
Column-column 1.30 | 463 1.27 2.68 148 | 630
Supernode-column 1941 760 259 769§ 200 757
Supernode-pair 2081 924§ 2.7 9.00 1| 214 9.09
Supernode-supernode 259 9861 2.66 945 1 204 | 511!
Supernode-matrix - - 2.67 986 (1 215, 914
Large:
Column-column 0997 5611 094 279 113 754 -
Supernode-column 1.63 | 10.31 1.99 | 10.20 1.85 | 11.0%
Supernode-pair 2191 15593 2641 1409 | 239 15385

Superncde-supernode 33211840 | 334 | 1787 2947 16.89
Supernode-matsix - - 330 0 1813 292 1750

Overall: |
Column-column 1071 525 1.08 3.05 124] 727
Supernode-column 1.74 1 951 2.10 930 1.86 1 955
Supernode-pair 218 [12.73 || 2.66 | 12034 2281 1263
Supernode-supernode 3051 14.01 3091 13720 258 127!
Supernode-matrix - . 3.09 1410 2637 1327

CHAPTER 3. SEQUENTIAL SPARSE CHOLESRY FACTORIZATION H

Table 20: Mean memory references and cache misses per foaling-point operation References are to
4-byte words. Cache is 64 KBytes with 4-byte lines.

Left-looking Right-locking Multifrontal ,

Method Refs/op | Misses/op [| Refs/op | Misses/op || Refs/jop | Misses/op
[Small:

Column-cotumn 4.04 0.35 418 029 372 22
Supernode-column 2.30 0.32 213 .09 245 017
Supernode-pair 178 0.26 1.58 008 1 85 a7
Supernode-supernode 1.62 0.12 158 0.1 1 96 017
Supernode-matrnx . - 1.55 0.12 1.86 017
Large: ;
Column-column 3.65 0.96 4.06 1.03 3.25 1031
Supernode-column 1.63 0.92 1.62 0.63 1.67 .69
Supernode-pair 1.12 0.55 1.08 0.36 1.12 0.42
Supernode-superncde 1.07 0.15 1.06 0.15 115 0.20
Supernode-matrix - - 1.06 0.16 1.14 0.19
Overali:
Column-column 3.77 0.58 3.91 0.53 3.37 0.44
Supernode-column 1.76 0.55 1.71 .20 1.81 0.33
Supernode-pair 1.22 0.39 1.15 0.16 1.24 0.2%
Supernode-supernode 1.16 0.14 1.16 0.14 1.29 Q1%
Supernode-matrix - - 1.15 0.14 126 NG

splitting a supernode-matrix update into a set of supernode-supernode updates

Another important reason for the lack of improvement is the existence of significant fractions of
the computation that are not affected by the change from supernode-matrix to supernode-supernode
updates. One example is the propagation of updates, a step that is performed by each of the
methods. This computation achieves extremely poor data reuse, and generates a significant fraction
of the total cache misses. For example, the assembly step in the multifrontal supernode-supernode
method accounts for roughly 12% of the memory references, yet it generates roughly 30% of the
total cache misses. The reuse in this step is not increased in going to supernode-matrix primitives.

The small performance differences between the supernode-supernode and supernode-matrix meth-
ods are easily understood. Cache miss numbers are nearly identical for the two, making a significant
component of runtime identical. Memory reference figures are slightly lower for the supernode-
matrix methods, especially for the the small problems. The main reason is simply that the increased
task size of the supernode-matrix methods leads to slightly fewer conflicts between the numbers of
columns in the task and the degree of unrolling. The supernode-matrix methods achieve shghtis

higher performance overall on both machines.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 45

3.3.8 Summary

This section has studied the performance of a wide variety of methods for performung sparse C'hulesky
factorization. In doing so. we have identified the aspects of these methods that are important for
achieving high performance. We showed that performance depends most heavily on the efficiencies
of the primitives used to manipulate structures in the matrix. The simplest primitives, in which
columns modified other columns, led to low performance. They also led to large differences in
performance among the left-looking. right-looking, and multifrontal approaches. since each of these
approaches used different primitive implementations. As the structures manipulated by the prim-
itives increased in size, the efficiency of these primitives increased as well. The primary source of
performance improvermnent was the increased amount of reuse that was exploited within the primi-
tives. Another eflect of using primitives that manipulated larger structures was that the differences
between the left-looking, right-looking, and multifrontal approaches decreased. These primitives
allowed more of the factorization work to be performed within code that could be shared among
the three approaches. Thus, while the conventional wisdom had pteviously been that the high-
level approach, whether left-looking, right-looking, or multifrontal, is an important determinant of
performance, we have shown that it actually has a very small impact.

Our attention so far has been focused on the performance of sparse factorization methods on two
specific benchmark machines. We now attempt to broaden the scope of our study by considering the
effect of varying a number of machine parameters. In particular. we consider the impact of different

cache designs.

3.4 Cache Parameters

This chapter has so far only considered a memory system similar to the one found on the DECstation
3100, a 64 KByte direct-mapped cache with one-word cache lines. We now consider a number of
variations on cache design, including different cache sizes, different cache line sizes, and different

set-associativities.

3.4.1 Line Size

A common technique for decreasirg the aggregate amount of latency a processor incurs in waiting
for cache misses is to increase the amount of data that is brought into the cache in response to a
miss. In a standard implementation of this technique, the cache is divided into a number of rache
lines. A miss on any location in a line brings the entire line into the cache. This practice is of course
only beneficial if the extra data that is brought in is requested by the processor shortly after being
loaded. Many programs possess this spatial locality property. We now evaluate the extent to which

this property is present in sparse Cholesky factorization.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 44

In Figure 9 we show the magnitude of the increase in total data traffic that results when the size
of the cache line is increased. These figures show the percent increase in cache traffic. averaged over
the entire benchmark matrix set. when using a particular factorization me*hod on a cache with a
larger Line size, as compared with the traffic generated by the same method on a cache with a 4-byte
line size. Note that we do not mean to imply by our data traffic measure that an increase 1n traffic
is bad. An increase is almost unavoidable, since more data is fetched than is requested. The data
traffic measure is simply a means of obtaining an absolute sense of the effect of an increased lLine size
The amount of traffic increase that constitutes effective use of a cache line is difficult to quantify.
and in general depends on the relation between the fixed and the per-byte costs of servicing a miss
We note that in moving to a 16 byte line size, the increase in traffic is between 5% and 10%. thereby
reducing the total number of misses by almost a factor of four. This represents an excellent use of
longer cache lines. On the other hand. traffic is increased by between 100% and 350% when we move
to a 256 byte line. While the result is a factor of between 14 and 32 decrease in cache misses. it s
not clear that the cost of moving 2 to 4.5 times as much data between memory and the cache will
be made up for by the decrease in the number of misses.

Of the three high-level approaches, the data shows that the multifrontal approach is best able
to exploit long cache lines. This is to be expected, since this method performs its work within
dense update matnces. The data brought into the cache on the same line as a fetched itemn almost
certainly belongs to the update matrix that is currently active. The other two methods frequent!y
work with disjoint sets of columns. Data fetched in the same cache line as a requested data 1tem
often belong to an adjacent column that is not relevant to the current context. Also. for reasons that
will become clear in a later section, the fact that the update matrix occupies a contiguous area in
memory means that the multifrontal method incurs less cache interference than the other methods
Cache interference has a larger impact on overall miss rates when cache lines are long The extra
data movement in the multifrontal method therefore has some benefit to offset its cost on machines
with long cache lines.

We now focus on a subset of the above data. In order to better understand the performance of
the IBM RS/6000 Model 320, we look at the cache miss numbers for a cache with 64 byte cache
lines, which is the line size of this machine. Table 21 shows the increase in traffic for this line size
as well as the absolute amount of cache traffic that results for each of the methods. These numbers
are again averaged over the entire benchmark set. Note that while the increase in traffic is smallest
for the multifrontal approach, the overall miss rates for the multifrontal approach are still higher

than those of the other approaches.

3.4.2 Set-Associativity

Another technique to reduce the aggregate cost of cache misses is to increase the set-assomiativity of

the cache. As we mentioned earlier. a direct-mapped cache maps each memory location ta a specitis

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 7

£ e}

o

3

c *™r

[: 3

® & Column-column
2 10} © Supernode-column
2 + Supernode-pair
g x Supernode-supemade
S 200

T

a

100

Percent increase in tralfic (%)

19

190

Column-column
Supernoade-column
Supernode-pair
Superncde-supernode
Supernode-matrix

» x + O L

1 !
4 [] 18 12 - 28 t-1)

Cache iine size (Dyles:

Right-iooking

A J i

o -t i 1 i
4 [} 1 32 - 12 2%¢
Cachs iine size (bytes)
Lsft-looking
£ st
b4
8
< T
2 a Column-column
3 4 © Supernode-coiumn
g + Supernode-pair
g *% Supernode-supermode
> W - 5 Supernode-matriy
a
1804
(] o
” —
1
0o
4] 1

Cache iina siza (bytes}

Muinfrontad

Figure 9. Increase in data traffic due to longer cache lines. Cache size is 64 KBytes in all cases.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATIu N 4¥

Table 21: Effect of increasing cache line size from 4 bytes to 64 bytes. for 64 KByte cache. Memory
systern traffic is measured in 4-byte words.

Left-looking Right-looking Multifrontal

Traffic: Incr. in Traffic: Incr. in Traffic: Ince in
Problem Words/op | traffic || Words/op | traffic || Words/op | traffic
Column-column 0.90 55% 0.88 64% 0.52 18%
Supernode-column 0.82 48% 0.34 75% 0.41 24%
Supernode-pair 0.54 41% 0.27 61% 033 209
Supernode-supernode 0.20 43% 0.20 5% 0.22 22%
Supernode-matrix - - 0.20 41% 0.22 20%

Table 22: Effect of increasing cache set-associativity from direct-mapped to 4-way set-associative
Cache is 64 KBytes and line size is 64 bytes. Traffic is measured in 4-byte words.

Left-looking Right-looking Multifrontal |

Traffic: Decr. in Traffic: Decr. in Traffic: Decr. in
Problem Words/op | traffic Words/op | traffic Words/op | traffic
Column-column 0.56 38% 0.46 48% 0.47 10%
Supernode-column 0.61 25% 0.19 45% 0.32 23%
Supernode-pair 0.43 20% 0.16 39% 0.26 21%
Supernode-supernode 0.15 26% 0.14 I1% 0.18 19%
Supernode-matrix - - 0.14 29% 0.18 19%

location in the cache. When a data item is brought into the cache, the item that previously resided
in the same cache location is displaced. A problem arises when two frequently accessed memory
locations map to the same cache line. To reduce this problem, caches are often made with a small
degree of set-associativity, where each memory location maps to some small set of cache locations.
When a memory location is brought into the cache, it displaces the contents of one member of
this set. With an LRU (least recently used) replacement policy, the displaced item is the one that
was least recently accessed. While set-associative caches are slower and more complicated than
direct-mapped caches, they often result in a substantial decrease in the number of cache misses
incurred.

In Table 22 we show data traffic volumes (measured in 4-byte words per floating-point operation)
for a 64 KByte, 4-way set-associative cache with 64-byte lines. Note that these parameters are quite
similar to those of the RS/6000 cache. the only difference being in the cache size. The table also
shows the percent decrease in traffic when 4-way set-associativity is added to a 64 KByte cache with
64-byte lines. These numbers are again averages over the entire benchmark set. We see from these
numbers that set-associativity produces a significant miss rate reduction for all of the factonization

methods.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKRY FACTORIZATION =R

3.4.3 Cache Size

Up to this point in this chapter, we have only presented cache miss data for 64 KByte caches
We now consider the effect of varying the size of the cache for the various methods that we have
considered. The curves of Figures 10 show the miss rates for a range of cache sizes for matrix
BCSSTK15. The three graphs depict the cache behavior for the three different high-level approaches
(left-looking. right-looking. and muitifrontal), and the individual curves within each chart show the
cache behaviors for the different primitives. In the interest of saving space we show charts for a
single matrix, BCSSTK15. We have looked at data for other matrices, and found their behavior to
be quite similar. Similar charts for other matrices can be found in [38].

While exact explanations of the observed behavior would be impractical. we now provide brief.
intuitive explanations. We begin by noting that a 2 KByte cache yields roughly 100% cache read
miss rates for each of the methods, implying that the differences in behavior between the various ap-
proaches are determined by the number of read references that the approaches generate per floating-
point operation. The multifrontal method generates the fewest references among the column-column
methods, thus it generates the fewest misses. Similarly, the supernode-column methods generates
fewer references than the column-column methods, explaining their lower cache miss numbers.

As the size of the cache increases, we observe two distinct types of behavior. The methods that do
not attempt to reuse data (column-column, supernode-column, and supernode-pair methods) realize
a gradual decrease in miss rate, as more of the matrix is accidentally reused in the cache. Note that
the miss figures fall more quickly for the two right-looking methods, because of the different manner
in which reuse is achieved. As an example, note that the left-looking and right-looking supernode-
column methods achieve roughly equal miss rates with a 2 KByte cache. When the cache size is
increased to 128 KBytes, the left-looking method incurs nearly twice as many misses as the right-
looking method. From a previous discussion, we know that right-looking methods achieve ¢nhanced
reuse when supernodes fit within the cache. A larger cache makes it more likely that supernodes
will fit. The left-looking methods do not share such benefits.

The methods that block the computation to reuse data (supernode-supernode, and superncde-
matrix methods) show significantly different behavior. At a certain cache size, which happens to
be roughly 8K for this matrix, the miss rates begin tc fall off dramatically. This is because the
blocking strategy relies on sets of columns fitting in the cache. When the cache is small, one or
fewer columns fit, thus achieving no benefit from the blocking. Once the cache is large enough to
hold a few columns. then the benefit of blocking the computation begins to grow. We observe that
the miss rates fall off quickly for the blocked approaches.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 50

Misses per FP op

Column-column
Supernode-column
Supernode-pair
Supernode-supemode

»
Ld
T

%*¥ + O D

~
3

2 [} [] 10 22 [120 ™ s
Cache size (Kbytes)

Left-looking

Misses per FP op
]
T

»
3
1

Misses per FP op
~
g

-
8
1

Colymn-column
Supemaode-column
Supemode-par
Supemode-supernode
Supemode-matnx

> % + 00D

"% + OD

L1 od

[0 2 " t» 2 $12
Cache suze (Kbytes)

Right-tooking

Column-column
Supernode-column
Supernode-pa
Supernode-supemods
Supernode-matrix

Il

Multitrontal

= 290 2
Cache size {Kbytes)

Figure 10: Cache miss behavior for various methods. matrix BCSSTK15.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 51

Figure 11: Update creation.

3.5 Alternative Blocking Strategies

It is clear from the figures of the previous section that the simple panel-based blocking strategy that
has been employed so far i1s not very effective for small caches. The reason is clear: the amount
of achieved reuse depends on the number of columns that fit in the cache. In a small cache, few
columns fit so the reuse is minimal. This section considers the use of different blocking strategies.

We consider the impact of a strategy where square blocks are used instead of long, narrow panels.

3.5.1 The Benefits of Blocking

We begin by describing an alternate strategy for blocking the sparse factorization computation. and
describing the potential advantages of such an approach. This blocking strategy will be described
in terms of the multifrontal supernode-matrix method, although the discussion applies to the other
supernode-supernode and supernode-matrix methods as well. Recall that in the multifrontal method.
a supernode is used to create an update matrix. Consider the matrices of Figure 11. The B matrix
represents the non-zeroes within the supernode. The matrix B is multiplied by its transpose to
produce the update matrix C. In the previous section, this computation was blocked by splitting B
vertically, into a number of narrow panels. Figure 12 shows the case where the supernode is sphit
into two panels. A panel is loaded into the cache and multiplied by a block-row of the transpose of
B. which is actually the transpose of the panel itself. The result is added into . We now briefly
examine the advantages and disadvantages of such an approach.

To better understand the panel-oriented blocked matrix multiply. it 1s convenient to think of
the matrix-matrix multiply as a series of matrix-vector multiplies. The matrix in one matrix-vectar

multipiy 15 a portion of the panei that is reused 1n the cache; the vector is a single column from the

ol

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION Y

Figure 12: Panel blocking for update creation.

transpose of the panel; the destination vector is a column from the destination matrix (see Figure 13).
Thus, to produce one column of the destination, the code touches the entries in the block, one column
from the transpose, and of course the de "ination column. In terms of cache behavior, we expect
the block to remain in the cache across the entire matrix multiply. Consequently, once the blnck
has been fetched into the cache, the fetching of both the block and the column from the transpose
causes no cache misses. Only the destination column causes cache misses. If we assume that a
panel is r rows long and ¢ columns wide and that such a panel fits in the processor cache. then
Zer(r + 1)/2 operations are performed, and rc + r(r + 1)/2 cache misses are generated in computing
the entire update from a single panel. It is reasonable to assume that a panel is much longer than 1t
is wide, so we can ignore the rc term in the cache miss number. By taking the ratio of the resulting
quantities, we see that 2¢ floating-point operations are performed for every cache miss. The problem
with such an approach is that the program has no control over the number of columns in the panel.
The parameter c¢ is determined by the size of the cache and the lengths of the columns in the source
superncde.

As we saw in the previous section, with small caches and large matrices the panel dimension
¢ may be too small to provide significant cache benefits. It is clearly desirable to allew a blocked
program to control the dimensions of the block. The benefits of doing so have been discussed i a
number of papers (see, for example, {19}). We now briefly explain these benefits.

In a sub-block approach, the matrix B is divided both vertically and horizontally. A single sub-
block of B is loaded into the cache, and is multiplied by a block-row from BT . The result 1s added
into a block-row of C (see Figure 14). As can be seen in the figure, the contribution from a sub-black
~f B tn C is computed by performing a matrix-matrix multiply of the block with the transpose of

the blocks above it in the same block-column. The lower-triangular update that is added into the

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION

Figure 13: Matrix-matrix multiply as a series of matrix-vector muitiplies.

Figure 14: Submatrix blocking for update creation.

St
)e)

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION o4

diagonal of C is computed by performing a matrix-matrix product of the block with its transpose
To explain the cache behavior of such an approach. we again consider the block matrix-matrix
multiply as a series of matrix-vector multiplies. In this case. we can choose the dimensions r x »
of the block to be reused in the cache. For each matrix-vector multiply, the reused block remains
in the cache, while a column of length ¢ is read from the transpose and a column of length r 1»
read from the destination. In the sub-block case, the column from the transpose does not come
from the block that is reused in the cache {except in the infrequent case where the block on the
diagonal is being computed). In terms of operations and cache misses, 2rc operations are performed
during each matrix-vector multiply. and cache misses are generated for a column of length r and a
column of length ¢. We again assume that the initial cost of loading the reused block into the cache
can be ignored. To maximize performance, we wish to minimize the number of cache misses per
floating-point operation. subject to the constraint that the r x ¢ block must fit in the cache. In other
words. we want to minimize r + ¢ subject to the constraint that rc < C. where C is the size of the
cache. This minimum is achieved when r¢ = (" and r = ¢ = /C. Thus. the maximum number of
operations per cache miss is 2¢2/2¢ = ¢, and that maximum is achieved using square blocks that fill
the cache. This ratio may appear worse than the 2¢ ratio obtained with a panel-orienied approach.

but recall that ¢ will be much larger in general for square-block approaches.

3.5.2 The Impact of Cache Interference

Since the use of a square-block approach has the potential to greatly increase reuse for large matrices
and small caches, we now evaluate factorization methods based on such an approach. The imple-
mentation of a multifrontal square-block method is relatively straightforward. We have implemented
such a method and simulated its cache behavior. The results were somewhat surprising. The muss
rates for small caches were slightly lower than those obtained from panel-blocked approaches. but
they were not nearly as low as would have been predicted by the previous discussion. The reason
1s that the analysis of the previous discussion assumed that some amount of data would remain in
the cache across a number of uses. The problem is that even though the data that was assumed to
remain in the cache was smaller than the cache size, much of it nonetheless did not remain in the
cache between uses. We now consider the reasons for this cache behavior and consider methods for
improving it.

To understand the cause of interference in the cache. it is first important to understand how a
cache is built. Recall that the primary benefit of a cache is that the data contained in it can be
accessed extremely quickly. The cache must consequently be able to quickly determine whether it
contains a requested data item and if so where it is held. In order to keep caches fast, they must b
kept extremely simple. One of the most common means of designing a simple, fast cache is to build 1t
ltke a hash table, where a particular data location can only reside in one location in the cache Such

a design is called a direct-mapped cache. A slightly more complicated design. the set-associative

CHAPTER 3. SEQUENTIAL SPARSE CHOLESRKY FACTORIZATION 3

cache. maps a data location to some small set of cache locations tu either case . the deternunation of

whether a data location is held 1n the cache 15 as simple as determining which cache kcauons could
contain that data location. and then determining whether the data item s indeed present moany of
them The hash function. called an address mapping function. 1s typrrally extremely sunple almost
always using the address of the data item modulo some power of two to deternune the cache location
in which that data location would reside Computationally such a mapping function coreesponds
to the use of some number of low-order bits of the data address. vielding an extremels texpensive
function to compute.

One important consequence of such a cache design 1s that the amount of data that can b hell
in the cache at one time is determuned not only by the size of the set of data but also by whether
each data item in the set maps to a different location in the cache if any two items map to the san
location {or any g + 1 items in 2 set-associative cache of degree a}. then they displace rach uther
We now consider the relevance of this fact to the blocking approaches that have heen discussed <o
far.

Both panel-blocking and square-blocking assume that some block of the matrnix remains in the
cache across multiple uses. In the case of panel-blocking. the block that i1s reu ed and 1s assumed
to remain iu the cache corresponds to the non-zeroes from a panel. a set of aijacent columns whaose
size 1s less than the size of the cache. One important property of a panel 1s that the non-zetnes
of its member columns are stered contiguously in memory. and thus cannot possible interfere with
each other in the cache. Contiguous data locations map to contiguous cache locations. making
interference impossible.

If we consider the case of square-blocking, we note that this approach assumes that a square
sub-block whose size is less than the cache size remains in the cache. However in this case. the
sub-block does not occupy a contiguous address range in memory. Whenever we advanre from
one column of the sub-block to the next. a jump in memory addresses occurs. Consequently 1t 18
possible for one column to reside in the same cache locations as the previous column. or ndeed
any other column of the block (we termed the resulting cache intetference self-interference in (26}
It 1s therefore extremely likely that a block whose size is roughly equal the size of the cache wiil
experience self-interference. In fact, the impact of such self-interference i1s typically extremely large
requiring a significant fraction of the block expected to remain the cache to be reloaded for »ach
use. This interference is responsible for the poor performance that we nhserved for the square-blnek
approach.

The reused block 1s not the only data item that experiences interference in the cache Another
form of interference, which we term cross-interference. accurs whan the two vectors fetched for a
single matnx-vector multiply interfere with the block or with each other Fortunately the impart of
such cross-interference s much less severe Recall that during a single matnx-vector multiply. the

data items that are touched are the entries from the hlnck and the entries from a pair of vectors 1y

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION O

a
[+
S omp /
o3
3 .
s b8e
v
b3
[X3 d
[X 2 od
LR X o
oo
bl » 8K
&H 32K
L] 1 1)
0'14N 320 0AR 80 (7) 1.08

Cacne fracuon occupied by block

Figure 15: Cache miss behavior for multifrontal supernode-matrix method. using square blocks for
matrix BCSSTK15. Cache sizes 2K. 3K, and 32K.

the case of square blocks, the block would contain C data items, where C is the size of the cache,
while the vectors wouuld each contain /C data items. Recall that each matrix-vector multiply s
assumed to cache miss on the two vectors, resulting in 2¢/C cache misses If the block interferes with
itself. then the matrix-vector multiply could generate (' cache misses instead. On the other hand
the increase in cache misses due to cross-interference from the two vectors is limited by the size
of the vectors themselves. Therefore, cross-interference increases cache misses by a small constant
factor.

An obvious solution to the problem of a reused block interfering with itself in the cache 1s to
choose a block size that is much smaller than the cache size. so that the cache mapping i1s not
as crucial. To determine an appropriate choice for the block size, we have considered a range of
different cache sizes. and a range of different block sizes for each cache size. The results ‘or matrix
BCSSTKI15, using a direct-mapped cache, are shown in Figure 15. It is clear from the figure that the
optimal choice of block size uses only a small fraction of the cache. Indeed the optimal choice wiih
respect to cache misses is most likely suboptimal for overall performance. For the case of a 32 KByte
data cache, the block size that minimizes cache misses is 16 by 16. In general. such a small blook
size would certainly lead to decreased spatial locality on a machine with long cache lines. it would
also lead to small inner loops. potentially leading to increased time filling and draining pipelines (ax
short vectors would lead to decreased performance on vector machines)

Another possible solution to the problem of a reused block interfering with itself in the cache s
to copy the block to a contiguous data area, where it is certain not to interfere with wtseif (10 26

In effect. the cache is treated as a fast local memory. The data to be reused are explicitly copied

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION o7

8
S omt-
3
o
w
2 0s0t-
©
it RN o 4
.
onf ¢
a8
oWy~ X
-2 c
- —— 8d Biocks
010 o BK o
& 32K . Uncopied blogks
o 1 | : i i
“8.00 9.20 (Y7 .05 (Y 190

Cache fraction occupied Dy biock

Figure 16: Cache miss behavior for mulufrontal supernode-matrix method. using square blocks and
copying, for matrix BCSSTK15.

into it before being used. The result of employing the copying optimization to the sparse problem
(BCSSTKI5) is shown in Figure 16. The solid curves in this figure show the cache miss rates for a
copying code. and the dotted lines show the miss rates for the previous uncopied code 1t i5 clear
from this figure that copying leads to a significant decrease in cache misses and allows for larger block
size choices. This data copying naturally has a cost, which we will investigate in the next subsection
While the cost is moderate. it is not completely negligible. We therefore briefly note that it may be
advantageous to work with both copied and uncogied blocks in the same code. switching between
them depending on whether or not a block would derive benefit from copying.

Before presenting performance results for square-block supernode-matrix approaches on our
benchmark machines. we briefly consider the use of square blocks in supernode-supernode meth-
ods. We omit the implementation details. and simply mention that the identical considerations.
including cache interference and block copying. apply. An important difference exists in the amount
of copying that must be done, however. Recall that the main difference between supernode-matrix
and supernode-supernode methods is that in the former, a single supernode is used once to madify
the entire matrix. Since each supernode is used only once, a code that copies blocks will copy each
non-zero in the matrix at most once. In supernode-supernode methods. on the other hand. a single
supernode ts used to modify several other supernodes. Consequently, if non-zeroes are copied. then
the entries of a single supernode must be copied multiple times, once for each supernode-supsrnide
operation in which they participate At this point, we simply note that the cost of data copving
larger. The magnitude of this increase will be considered in the next subsection.

We now present performance numbers for square-black approaches to sparse factorization on onr

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 5Hx

Table 23: Performance of square-block uncopied methods on DECstation 3100 and IBM RS/6000G
Model 320.

Left-looking Right-looking Mutufrontal
supernode-supernode || supernode-matrix ;| supernode-matrix .
MFLOPS MFLOPS MFLOPS

Problem DEC 1BM DEC 1BM DEC IBM
LSHP3466 1.97 6.70 || 2.19 782 L79 764
BCSSTK14 2.74 94 2.76 12.30 2.38 162
GRID!00 2.12 7444 235 534 || 184 N4
DENSET750 || 4.03 23.70 || 4.04 23.66 || 3.94 22,15 ¢
BCSSTK?23 3.24 17.26 3.21 17.05 297 1643
BCSSTKi5 || 3.43 1846 || 3.38 1833 1 3.17 1734 .
BCSSTK18 || 2.86 14.20 4} 2.90 14.41 | 254 14.39
BCSSTK16 || 3.21 17154 3.16 17.23 || 3.00 16.68
Means: |
Small 2.23 8.17 || 2.41 9.12 | 1.97 ¥ 79
Large 3.15 1640 11 3.13 16.48 || 2.88 16.03
Overall 2.80 1230 || 2.90 13.07 || 254 12.61

two benchmark machines. We give performance figures for a square uncopied approach in Table 23.
and for a square copied approach in Table 24. These tables give performance numbers for the
highest performance versions of each of the three factorization approaches. The block sizes on the
DECstation 3100 are 24 by 24 for the uncopied code and 64 by 64 for the copied code. The lock
sizes on the IBM RS/6000 are 24 by 24 for the uncopied code and 48 by 48& for the copied code These
block sizes empirically give the fewest cache misses on the caches of these machines. We show a
comparison of mean performances of square-block and panel-block schemes in Table 25. Surprisingly
both the copied and the uncopied square-block methods are slower than the panel-blocked methods
on both machines. On the DECStation 3100, the square-block schemes are between 3% and 13%
slower than the panel-blocked schemes. The left-looking supernode-supernode method with block
copying yields the largest difference in performance. On the IBM RS/6000. the uncopied square-
block code is between 5% and 12% percent slower than the panel-blocked code. and the copied
code is between 8% and 21% slower. Again, the left-looking supernode-supernade cade with block
copying shows the largest difference in performance. We now study the performance of square-hlock
methods in more detail in order to explain the performance on the two benchmark machines and

also to predict their performance on other machines and matrices.

3.5.3 Advantages and Disadvantage of Square-Block Methods

It is clear from the results presented so far in this section that square-block methods have certan
advantages and certain disadvantages relative to panel-blocked methads. On the two benchmark ma

chines. the disadvantages outweigh the advantages. We now study where the performance ditferenc s

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 53U

Table 24: Performance of square-block copied methods on DECstation 3100 and IBM RS/600U
Model 320.

Left-looking Right-looking Multifrontal

supernode-supernode || supernode-matrix || supernode-matrix
MFLOPS MFLOPS MFLOPS

Problem DEC IBM DEC IBM DEC IBM
LSHP3466 1.74 569 || 2.01 694 || 1.61 6.98
BCSSTKI14 || 2.46 10.74 || 2.59 1171) 2.23 11.18
GRIDI1GO 1.94 6.36 | 2.22 7641 1.71 T.45
DENSET750 || 4.40 25.08 || 4.40 2508 || 4.21 23.21
BCSSTK23 || 3.25 1687 1| 3.29 17.36 || 3.02 16.64
BCSSTKI1S || 3.42 1790 || 3.48 18.39 i 2.99 17.76
BCSSTKI18 || 2.77 13.00 || 2.94 1435 4§ 260 14.37
BCSSTKI16 || 3.07 1594 | 3.00 16.97 [| 2.9y | 16.72

Means:

Small 2.00 7.04 4 2.25 8321 1.81 8.18
Large 3.06 1534)i 3.12 16.39 || 2.85 16.15
| Overall 2.66 1110 || 2.83 1243 |} 2.44 12.20

Table 25: Percentage of panel-blocked performance achieved with square-blocked codes, on DE(-
station 3100 and IBM RS/6000 Mode! 320.

Left-looking Right-looking Multifrontal

supernode-supernode || supernode-matrix || supernode-matrix
Method DEC|{ IBM DEC| IBM DEC | IBM
Small:
Uncopied square blocks || 86% 85% i 90% 92% | 92% 96%
Copied square blocks 7% 3% || 84% 84% || 84% 399
Large:
Uncopied square blocks || 95% 89% || 95% 91% [99% 92%
Copied square blocks 92% 83% || 95% 90% || 98% 92%
Overall: u
Uncopied square blocks || 92% 88% || 94% 93% I} 97% 95%
Copied square blocks B1% 9% | 92% B89% || 93% 92%

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION i3

between the approaches he, and we consider their relative importance

We begin by looking at the advantages of square-block approaches. Recall that the mam i
tivation for considering square-block approaches was to improve the cache performance of sparse
factorization on machines with small caches. We now show the effects of using a square-blnek ajp-
proach for a variety of cache sizes. We present cache muss figures for supernode-supernode and
supernode-matrix methods for matrix BOSSTK15 in Figure 17. The first curves in each of these
graphs are the cache miss figures for the panel-oriented methads These curves were preseuted i
an earlier set of graphs. We have added cache miss results for square-block approaches hoth with
and without copying. The square-block approaches use block sizes near the empirical optimums for
reducing cache misses. The curves clearly show the advantages of a square-block approach Such an
approach generates many fewer misses than a panel-blocked approach for small cache sizes

Interestingly, the uncopied approach does not generate significantly more misses than the copred
approach. even though the uncopied approach uses much smaller blocks. The small size of this
difference is especially surprising because we have observed factors of two or more reductions 1 mss
rate when using a copted approach to compute the update matrix from a single large supernode
The main reason for the small difference is that much of the sparse computation does not contam
significant reuse. The advantages of the copied approach are diluted by the iisses incurred in
operations that do not derive an advantage from copying. Another reason is that supernodes that
fit in the cache do not derive any cache benefit from copying. As the cache grows, the number of
such supernodes increases.

To relate these numbers to the performance of our benchmark machines, we note that the redus.
tions in miss rates for the square-block approaches on 32 KByte and 64 KByte caches are moderate.
Furthermore, the miss rates for the panel-blocked approach at these cache sizes are extremely Jow,
meaning that the costs of cache misses are already a small fraction of the overall cost of the factor
ization. Square-block methods therefore provide only a small performance advantage due to cache
misses for our benchmark machines.

We now turn our attention to the disadvantages of square-blocked approaches. We first consider
square copied block methods, where the most important disadvitage is the added cast of explicitls
copying data to a separate data area. One observation to be made at this point is that this copving
is similar to the extra data movement that is done in the multifrontal method. where supernode
entries are added into the update matrix and their final values are later copied back. In fact, we
found that the extra data movement in the multifrontal method resulted in lower performance when
compared with methods that did not perform this extra data movemnent. The copving therefore has
some non-trivial cost associated with it. In the case of supernode-supernode methods, more data
copying is performed, and the related costs will be even larger. In order to obtam a rough idea of
how large these costs are, we present in Table 26 the percent juerease i inemory references caused

by the copying. These numbers show the inerease i total references over the entire program

CHAPTER

Misses per FP op
I3
E)

.80

.10

o0

Figure 17:

Lo

S-S, panais
S-S, square uncoped blocks
S-8. square copsed blocks

3. SEQUENTIAL SPARSE CHOLESRY FACTORIZATION 1

J

S-S, panels

S-S, square uncopied tlocks
S-S, square coped blocks
S-M. panels

S-M, square uncopied blocks
S-M. sguare copiec biocxs

Misses per FP op
»
S

»
3
T
> e8> o1}

(¥)

a3

ale

wLie

1 . L L e 1 J-— 5 a0e d L i i 1 L H
4 s 1 2 - 128 88 12 2 4 » " 2 - 3] e 512
Cache size (Kbytes) Cache sae (Xbytes:
Left-loong RAight-looiung

048

S-S, panels

S-S. square uncoped biocks
S-S, square copied blocks
S-M, paneis

S-M, square uncopied biocks
S-M, square copied biocks

> B0 OO0

! b H i i 4 d i

2 4 [[) “ » 288 512
Cache size (Kbytes)

Muttfrontal

Cache miss behavior for various methods. matnix BCOSSTKI5 S-S is supernode-

supernode. S-M is supernode-matrix.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION i

Table 26: Increase in memory references due to data copying

Supernode-matrix | Supernode-supernode !
Problem Increase increase i
LSHP3466 5.5% 97%
BCSSTK14 5.2% 9.8%
GRID100 4.6% 9.9%
DENSE750 2.0% 2.0%
BCSSTK23 2.3% 4.9%
BCSSTK 15 2.8% 55%
BCSSTK13 2.6% 8.4%
BCSSTK 14 315% T1%

moving from a multifrontal method that does not copy to one that does. These numbers assume
that supernodes containing a single column are not copied, since any sub-blocks of such supernodes
trivially can not interfere with themselves.

The numbers of Table 26 indicate that block copying incurs a moderate cost for the supernode-
matrix methods, and a larger cost (two to three times higher) for the supernode-supernode methods
Regarding the trends in the cost of data copying, we have noticed that the relative costs of copying
decrease as the size of the matrix increases.

Moving to the square uncopied approach, we note that the primary disadvantage of this ap-
proach comes from the smaller blocks that it must use. These smaller blocks increase the overheads
associated with performing block operations and thus lead to less efficient kernels. They also result
in higher miss rates than copied blocks.

The performance of square-block approaches on our benchmark machines can therefore be un-
derstood as follows. Square blocks decrease the cache miss rates slightly for our benchmark matrices
and benchmark machines. However, in the case of the copied approach, the benefits of this reduc-
tion in misses are offset by the cost of the copying. The left-looking supernode-supernode method
performs the most copying, and consequently it suffers the largest decrease in performance. In the
case of the uncopied approach, the benefits of the reduction in misses are offset by the increase 1in
overhead associated with working with small blocks.

We therefore find that the square-block approaches offer no advantage for the machines and matri-
ces that we have considered. However, the reader should rot conclude from this that such approaches
have no advantages at all. Two important trends make it hkely that square-block approaches will
provide significantly higher performance than panel-block approaches in the near future. First. we
expect that ever-increasing processor speeds, combined with ever-increasing memory densities. wili
allow workstation-class machines to solve much larger problems than are solved today. Second we
expect small on-chip caches to become more common as processors become faster and thus require

faster access to cached data. These two important trends. larger problems and smaller op-rhip

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 63

caches, both contribute to a decrease in the number of columns that can be held in the cache. thus
making panel-oriented approaches much less effective at reducing cache miss rates than square-block

approaches.

3.6 Discussion

This section will briefly discuss a number of issues that have been brought up by this chapter

3.6.1 Square-Block Methods: Performance Improvement on Benchmark
Machines

We begin by briefly reconsidering the performance of square-block approaches on our benchmark
machines. While the previous section showed that these methods do not improve performance for the
benchmark matrices that we have chosen. an unanswered question is whether they would improve
performance for any matrices. As it turns out, the answer depends on the relationship between the
size of the cache and the size of main memory. Cache reuse in a panel-blocked approach is limited
by the length of the longest column in the matrix. Let us consider how long this column can be.
Since we are interested in in-core factorizat.on, we know that the matrix of interest must fit in main
memory. We also know that if a column has length !, then the column produces an update matrix
of size I{{ + 1)/2, and thus the matrix must be at least this large. Since this is a lower bound on
the space required, and a dense matrix achieves this lower bound, then the sparse matrix with the
longest columns that fits in a given amount of main memory is a dense matrix. If we consider our
DECstation 3100, which contains 64 KBytes of cache and 16 MBytes of main memory. a simple
calculation reveals that the largest dense matrix that fits in 16 MBytes is roughly 2000 by 2000
Since a 64 KByte cache fits 8192 entries, at least four columns from this dense matrix. and thus
from any matrix that fits in main memory, will fit in cache. Thus, any problem that fits in main
memory will achieve some degree of cache reuse on this machine.

If we consider the dense benchmark mairix (DENSE750), we note that at least 10 columns of
this matrix fit in a 64K cache, and thus a panel-blocked method would use panels of that size.
On the DECstation 3100, a panel-blocked method factored DENSE750 at a rate of 3.8 MFLOPS
The uncopied square-block method used a block size of 24, which would be expected to slightly
increase reuse. Indeed, the uncopied method factored the matrix at roughly 4.0 MFLOPS. The
copied square-block method. with a block of size 64, significantly increases the amount of reuse and
factors the matrix at a rate of 4.4 MFLOPS, or 16% faster.

A dense matrix provides only a lower bound on the number of columns that fit in the cache A
truly sparse matrix would have much shorter columns, so we would expect more reuse. For example
the largest 5-point square grid problem that fits in 16 MBytes of mermorty is roughly 220 by 220

The longest column in this matrix contains 330 entries. meaning that at least 24 columns would

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 64

fit in the DECstation 3100 cache. Thus. for a machine with 64 KBytes of cache and 16MBytes
of memory, we would expect a sparse matrix that fits in main memory to achieve significant data
reuse using a panel-blocked algorithm. Of course, a general-purpose factorization iuethod should not
make assumptions about the relative sizes of cache and main memory. We are simply explaining the
reasons for the lack of observed improvement, and pointing out that we would need a much larger
problem and much more memory to realize significant benefits from a square-block approach on a

machine with such a large cache.

3.6.2 Improving Multifrontal Performance

Another question that we now consider is whether the performance disadvantage that the multi-
frontal method suffers relative to the other methods due 10 extra data movement can be overcome
Much of this extra data movement is caused by the absence of a special case for handling supern-
odes that contain a single column. The problem of dealing with smali supernodes tn the multifrontal
method has been recognized in the coutext of vector supercomputers. One solution that has been
investigated is supernode amalgamaticen [10, 17}, where supernodes with similar structure are merged
together to form larger supernodes. The cost of such merging is the introduction of extra non-zeroes
and extra floating-point operations. The merging is done selectively, so that the costs associated
with combining two supernodes are less than benefits derived from creating larger supernodes. Our
observations about the lower performance of the multifrontal method on our benchmark machines
indicate that amalgamation techniques have a role in sparse factorization on workstation-class ma-
chines as well. Note, howevs,. that the potential benefits of amalgamation are not specific to the
multifrontal method. The performance of the left-looking and right-looking approaches also suffers
somewhat due to the existence of small supernodes. We will discuss amalgamation in more detatl in
later chapters. For now, we sumply note that we have found that when amalgamation is performed
on the matrix before the factorization, the performance gap between the multifrontal method and
the other two methods is narrowed somewhat.

Another approach to improving the performance of the multifrontal method would be to use a
hybrid method. as suggested in [31]. Normally, the multifrontal method traverses the elimination
tree all the way down to the leaves. Briefly, a multifrontal hybrid uses a multifrontal approach above
certaln nodes in the elimination tree and an approach that s more efficient for small problems for
the subtrees below those certain nodes. The selection of the nodes at which the hybrid method
would switch approaches would depend on the relative strengths and weaknesses of the two blended

approaches of the hybrid.

3.6.3 Choice of Primitives

Our study has considered a range of methods for factoning sparse matnices, wncluding a number

methods that are obvicusly non-optimal We have included such methods for 2 number of reasons

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 65

The first is to obtain a better understanding of the benefits obtained by moving from one approach
to another. In general, the methods based on higher-level primitives are much more complicated to
implement. In particular, unrolling and blocking are quite tedious and time-consuming. We wanted
to understand how much benefit was derived by expending the effort required to implement them
Also. through a gradual transition from relatively inefficient methods to efficient methods. we were
able to obtain an understanding of where the important sources performance improvement were.
Another reason for constdering factorization primitives that are inefficient on hierarchical-memory
machines is that parallel factorization methods are typically implemented in terms of them. One
reason has simply been that few distributed-hierarchical-memory multiprocessors have been available
in the past. Another reason is that primitives expressed in terms of larger structures in the sparse

matrix limit the amount of available concurrency. We will return to this issue later in this thesis.

3.6.4 Performance Robustness

Our final point of discussion relates to the performance robustness of the methods that we have
considered. While the relative performance levels of the fastest methods have been quite consistent
across the different benchmark matrices on the machines that we have considered, it is quite possible
that the methods have important weak points that were not brought out in the benchmark set.

The first thing to note when considering the robustness of factorization methods is that cache
miss rates can play an important role in determining performance. We therefore conclude that
panel-blocked approaches are not robust. They generate significantly higher miss rates than square-
blocked methods for large problems or small caches, thus potentially resulting in significantly lower
performance. A robust general-purpose code would employ square-blocking. A similar but less
important consideration is whether blocks should be copied. A copied code gives lower miss rates for
small caches, but it also gives lower performance for small problems due to the cost of performing
the actual copying. As was mentioned in this chapter, a reasonable alternative is to use both
approaches within the same code, switching between them on a per-supernode basis, depending on
whether copying would provide significant cache miss benefits for the current supernode.

Given the above considerations, we now consider the robustness of each method. Beginning with
the left-looking supernode-supernode method, we note that this method contains a certain degree
of unpredictability. When supernodes are copied, this method must perform more copying than
the supernode-matrix methods. While the increase for the benchmark matrices we considered was
moderate, there is no guarantee that it will always be moderate. We can invent sparse matrices
where supernode copying happens much more frequently.

The right-looking supernode-matrix method also contains some degree of uncertainty This
method must compute relative indices using an expensive search. While this search occurs extremely
infrequently for the benchmark matrices that we have considered, again there is no guarantee that

it will not occur much more frequently for other matrices. Also, the search code is likely to hecome

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 66

even more expensive in the future, as the amount of instruction parallelisin that processors can
exploit increases.

The multifrontal method provides the most robust performance among the three approaches
The cost of copying data in a copied square-block approach is guaranteed to be moderate. sinee
each matrix entry is copied at most once. The cost of computing relative indices 15 alse moderate,
since they are computed once per supernode. The performance of the multifrontal method on our
benchmark nachines was observed to be slightly lower than that of the other methods. but the
difference was small. The multifrontal method contains some unpredictability. but it s not in the
performance. Instead, the unpredictability 1s in the amount of space required to factor a matrix,

since the size of the update matrix stack can vary widely.

3.7 Related Work and Contributions

An enormous amount of work has been done in the past on the problemy of performuing sparse
Cholesky factorization efficiently. We now briefly comument on the contributions the work described
in this chapter have made to the sparse Choiesky factorization literature.

The focus of our work in this chapter has of course been on maximizing the performance of
sparse factorization on workstation-class, and on understanding the issues that are most nnportant
for obtaining high performance. Virtually all previous work that considered performance issues
for sparse factorization either considered performance on vector supercomptiters or it considered
performance on workstation-class machines using column-oriented methods. Indeed. we believe it
is fair to say that the common belief was that workstation-class machines were inherently a low-
performance platform. and as such provided few opportunities for performance improvement. Indeed.
column-oriented methods are still the most commonly used methods on workstation-class machines.
Our work has made it clear that substantial performance improvements over these earlier methods
are possible, that workstation-class machines are indeed a high-performance platform for sparse
factorization, and 1t has described simple techniques that provide high performance on this class of
machines.

We should note that some previous work on the multifrontal method [1] had constdered perfor-
mance on a machine with a memory hierarchy. By expressing frontal update matrix computation
in terms of dense matrix operations, this work was able to block the computation for a memory
hierarchy. Results were presented for an Alliant X/8 vector mini-supercomputer with a one-fevel
cache. However. this rarlier work provided no context for interpreting the results. It was not clear
whether the resulting performance was significantly higher than the performance that would have
been obtained with a traditional column method. It was also not clear whether the use of 4 nlti-

frontal framework was essential for obtaining ood performance Tnour study. by looking at several

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 67

methods in a consistent framework we were able to isolate and quantify the magnitudes of the per-
formance improvements that came from virtually all of the important design choices in a sparse
factorization method.

Another important contribution of our work comes from our investigation of the effects of realistic
caches. We showed that a panel-blocked approach, although conceptually appealing, has important
limitations for large sparse problems. We showed that the alternative, a square-blocked approach.
has hmitations as well related to cache interference. We described the steps that are necessary to
get around these limitations, namely block copying, and considered the complexity of these steps
Finally, we considered the effects of cache line size and cache set associativity on overall cache

performance for the various methods.

3.8 Conclusions

An obvious end goal of a study like the one performed in this chapter is to arrive at a particular
choice of method that yields consistently higher performance than the other choices. Unfortunately.
no factorization method fit this description. Instead, a number of methods achieved roughly the
same levels of performance, each with its own advantages and disadvantages. A less ambitious goal
for a general-purpose factorization method is that it provide robust levels of performance. near the
best performance of all other methods in almost all cases. From our discussion, it is clear that the
multifrontal method best fits this description. although this method has the disadvantages that it
performs more data movement than other methods, it is more complicated to implement. and its
storage requirements are larger and less predictable.

T' e primary conclusions we draw from this chapter relate less to which method is best overall
and more to what is required to achieve high performance with a sparse Cholesky factorization
implementation. Our conclusions are: (1) primitives that manipulate large structures are important
for achieving high performance on hierarchical-memory machines; (2) the choice of left-looking.
right-looking, or multifrontal approaches is less important than the choice of the set of primitives

on which to base them.

Chapter 4

Evaluation Environment for

Multiprocessors

4.1 Introduction

Having established in the previous chapter that reusing data is crucial for achieving good performance
from sequential machines with hierarchical memory organizations. we now turn our attention 1o
parallel machines with similar memory system organizations. Before looking at specific algorithms,
we first provide a detailed descrintion of the machine environment in which our parallel method
evaluations will be performed.

The parallel performance numbers we present will come from two parallel environments. The first
is the Stanford CASH multiprocessor [27, 28], a single-address-space distributed-memory machine
currently being built at Stanford. This chapter brieflv describes the organization of this machine.
including a discussion of the specific costs of the machine operations that will be important for
parallel factorization. To obtain a better understanding of the performance of this and other real
parallel machines, we also consider performance on a simulated parallel machine. This chapter wiil
describe our simulation model, including & discussion of the factors we believe are most important
in determining parallel machine performance and a discussion of the specific performance models we

use to capture these factors.

4.2 The Stanford DASH multiprocessor

An important part of investigating the performance of a parallel algorithm is naturally to look at
petformance on a real parallel machine. This thesis presents performance numbers from the Stanford

DASH multiprocessor, a 48 processor {currently) machine designed at Stanford. The most interesting

68

CHAPTER 4 EVALUATION ENVIRONMENT FOR MULTIPROCES 5ORN i

aspect of this machine for our purposes 15 11s memory systerm organization . Memaory s physieally
distributed among the processors, v :th each processor contaming some portion of the global mian
memory {see Figure 21n Chapter 1} The machine provides & single-address-space (shared memors
programmung model, where any processor can access any memory location in the =ntire machine with
an ordinary load instruction The cost of such a load naturally depends on the physical location of
the requested memory black

The machine 1s organized as a set of clusters, where each cluster contains 4 processors ansd some
portion of global main inemory Each processor 15 a high-performance MIPS R3000 integer utt and
an R3010 floating-poiat co-processor Each processor has a 64 KByte instructon cache a4 64 KBy
first-level data cache and a 256 KByte second-level data rache All are direct-mapped The cachies
can cache any memory location from the global shared memory. The processors execute at 33 Mz
and are rated at 27 MIPS and 4.9 double-precision LINPACK MFLOPS

Processors are connected to each other at two different levels. The four processors within a
cluster are connected with a bus having a peak throughput of approximately 57 MBytes per second
The connection between clusters uses a two-dimensional mesh nterconnection network. and the
1terconnect provides a peak point-to-point bandwidth of roughly 60 MBytes per second

As mentioned earlier. the cost of a memary reference on the DASH machine depends on the
physical position of the referenced memory location. If the location 1s available in the cache of the
requesting processor. then the reference is serviced 1n a single cycle. If the location resides 1 the
portion of memory that is local to the requesting processor. then the reference requires roughly 3o
cycles and brings a 16-byte memory block into the cache. If the location resides in a non-local eluster
the request requires roughly 100 cycles and it again brings a 16-byte block into the cache Note that
in both cases the processors sits idle while the memory request 1s serviced. Other relevant costs for
the DASH machine are the cost of a floating-point multiply (5 cycles) and a floating-point add 2
cycies). From these numbers, it i1s clear that memory reference costs plav an extremely 1mpeortant
role 1in determining the performance of a parallel program To achieve maximum performatce
programs should be written to reuse data in the processor cache as much as possible When cachie
misses occur, those misses should ideally be serviced from the memaory that 1s local to the processor
that issued the request.

We should note that although the DASH machine provides a shared-memory programming medel
our impleizentations will make little use of this feature Al! important factorization data items (surh
as the cclumns of the matrix) will be explicitly placed in the local memories of “heir respective “owner’
processors. Furthermore, nearly all processor memory references that access non-local data will do
50 1n order to capy blocks of data {messages) from the local memory of some sending processor into
the local memory of the requesting processor. The nnly situations where we actually make use of
the shared-memory feature are for shared vanables that are accessed suthiciently infre uently tha

therr placement has no significant effect on performance {for example. the aniginat v matrix)

CHAPTER 4. EVALUATION ENVIRONMENT FOR MULTIPROCESSORS T

4.3 Performance Model

While 1t 1s important to look at algorithm performance on real parallel machines real machines
also have a number of drawbacks. For one. they do not provide detaded performance mfurimatn
They tell the user what level of performance is achieved. but they provide httde information 1o
allow the user to understand why this level is achieved Real machines also do not allow machine
parameters to be changed. A study of the effect of an ncrease mn the cost of a cache uss for
example. would be difficult or impossible. Any real machine will also contan some number
performance quirks. coming either from unusual features of the machine or alternatively from desin
compromises. Without the ability to abstract these quirks away. the implementor may wind o
designing parallel algorithms that specifically address these quirks instead of addressing more general
and more fundamental bottlenecks in parallel machines.

An alternative to real machines that is often used In computer architecture studies 15 detailed
multiprocessor simulation, where each instruction executed by each processor 1w the simulated ma-
chine 1s emulated, and the effect of that instruction on all other processors 1s computed While such
an approach addresses all the problems with real machines discussed above. 1t also possesses a cru-
cial weakness. Such simulations typically require between one thousand and one hundred thousand
times the runtime of the machine they are simulating to run the same program. Computer archi-
tecture studies that use such simulation understandably study small programs. Our interest here o~
on factoring relatively large matrices. The resulting simulation costs would simply be prohibitin,

The approach we take instead is to use coarse multiprocessor simulation. where the paralie
factorization is expressed in terms of high-level operations {e.g.. the modification of one supernod
by another, or the transmission of a supernode between two processors). I he simulator romputes
a runtime cost for these high-level operations based on a performance model that we will deseribs
shortly. The parallel computation is simulated using a discrete-event sunulation of these high-bey e
tasks.

Qur goal when modelling the parallel factorization is to capture only the most important fact o~
that affect parallel performance. To this end, we only model two costs The first s the st o f
executing a task, which we model in terms of the number of flvating-point operations performed in
the task and the number of data items that the task fetches from miemory The second = the ot
of moving data between processors, which we model in terms of the size of the chunk of data v b
moved and the communication bandwidth available between the source and destination processars

Note that our goal in this performance model is not to exactly model the Stanford DASH machine
We instead want to devise a general performance model that captures aspects that are expected to
be common to a variety of parallel machines and entical to determining parallel performaner W,
use the Stanford DASH machine to estimate relevant parameters for the model. but we 4o~ ol

so that these parameter choices represent realistic, achievable values,

CHAPTER 4 EVALUATION ENVIRONMENT FOR MULTIPROCESSORS 71

4.3.1 Computation Costs

We model the cost of executing a factonization task in terms of two quantities (J the com of
sxecuting the machine instructions necessary to perform one floating-point operation, and 3 the
cost of loading one double-precision word of data from local memory. The cost of the whole task s
stmply the sum of the floating-point operation and data feteh costs The (3 term s meant v capturs
not only the cost of the single istruction that performs the actual floating-point operation b
also the costs of any supporung integer operations. such as address caleulations or loop istructions
Regarding the values we assign to O and M. we note that a floating-point multiply-add pair on o
DASH processor requires roughly 7 machine instruction cycles. A cache muss on a 1-byre cache
requires 30 cycles and fetches two double-precision 1tems. giving a ratio of 4 3 between A and O
For the sake of normalization, we define the cost () to be equal one unit. and thus M s equal 413
We note that this ratio 1s quite close to the numbers we have calculated for a range of other current
hierarchical-memory processors. For example. similar calculations for the Hewlett Packard HP /uutt
Model 72G. the IBM RS/6000 Model 320, and the Intel iPSC/860 machines give ratios of roughis
4.6, 2.4, and 2.6, respectively. We use the value M = 4.3 throughout this thess

Note that this romputation cost model makes several simphfving assumptions. Probably the
most obvious is the assumption that the processor blocks when a cache miss is serviced While thie
is an accurate assumption for today’s processors. future processors may be bt with the alabty to
hide some of the latency of a cache miss by overlapping this latency with computation It 1 our
belief that such latency hiding will have only limited success. We expect that the ratio of memory
reference latencies to floating-point operation costs will continue to increase in the future as 1t has
in the past, so while it may become easier to hide latencies there will also be more latencies to hde
Thus we believe it s reasonable to assume that the processor will have to pay some cost for va~h
cache miss.

We should also note that we are nof claiming that it is unpossible to build a memory system
that can keep up with the memory fetch requests of a high-speed processor Indeed, today s vertor
supercomputer me .ory systems could certainly fill the need Qur claim s simply that such memor
systems will be much more expensive and consequently much less common than memory svsteins

that rely on Jow cache miss rates to achieve good performance.

4.3.2 Cache Miss Counts

Our task cost model has so far been expressed as a simple function of the floating-point nperations
and cache misses required by the task. While it is trivial to predict the number of floating-point
operations a task will require, predicting cache musses is significantly more difficult. This number
depends on a variety of factors, including the size of the cache, the amount of data that s actuajlhy
heing reused. the cache hine size and set associativity. and the way in which the reused data map-~

into the cache. Again. we attempt 1o keep nur model as simple as possible by considering onlyv the

CHAPTER 4. EVALUATION ENVIRONMENT FOR MULTIPROCESSORS T2

most important factors.

To illustrate our assumptions. let us consider the most tmportant operation in sparse {actoniza
tion. the modification of one supernode by another This operation involves a souree superaode S,
and a destination supernode Ny with potentially dhifferent non-zero structures Assume that ~, con-
tains s columns. and assume that d columns in 5; are affected by the modification. Recall that the
modification operation is performed in two steps. In the first. the update from 5, 1o Sy 15 computed
using dense matrix operations. In the second. the resulting update 1s added 1nto the appropriate
locations tn 54 using information about how the source and destination non-zero structures reiate

The computation of the update to Sy 1s performed as a dense matrix multiphcation. The first
matrix. call it U, contains the non-zeroes of S, at or below the diagonal block of 54 Thiss an 1 < »
dense matrix. where [is the number of non-zeros in a column of S, below the destination diagonal
The second matrix. Y. 1s the transpose of the block of non-zeroes 1n 5, that are adjacent to the
diagonal block of 5. This is an s x d dense matrix. The resuiting Z matrix, an { x d dense matnx
is the update that is to be added into Sy.

We assume that the update computation interacts with a memory hierarchy 1 the following way
We assume that the ¥ matrnix, of size s x d. s loaded into the cache once. The X matnix is then read
a row at a time, with that row being multiplied by Y to produce a row of Z Thus. the X and 7
matrices are each read {rom memory only once. As a result. the operation generates sd cache misses
on Y. sl misses on X, and dl misses on Z. During this computation. 2sdl floating-point operations
are performed. A common case that merits special attention is the case where both the source and
destination contain the same number of columns (s = d = Bj. In this case. 2B% aperations are
performed and 2Bl + B? =~ 2B misses are generated. giving a ratio of 1 miss for every B operations
B

to be the average cost of a floating-point operation when performing an update operation for which

[n order to be able to conveniently discuss the costs of such operations, we define a quantity Tt

the source and destination both contain B columns. Given this definition. we have
Tp(BYy=0+ M/B.

We should note that our description of the cache behavior of a supernode update computation
is somewhat oversimplified. In particular. due to stride-of-access issues the update operation may
not be coded in terms of rows of X' producing rows of Z We have also 1gnored issues of cache
line size, set associativity, and cache interference. We believe, however, that careful coding of the
matrix-multiply operation. including the use of data copying to avoid interference. would give results
that are quite close to those predicted above.

From the cache miss rates above. it is clear that the henefits of large supernodes grow with the
sizes of the supernodes. The benefits do not grow without bound. however. They are limited by the
fact that the 5 x d matrix ¥ must remain in the cache across muitiple uses. The maximum benefit
is therefore determined by the size of the cache. To eliminate the need to include the machine cache

size as a parameter in our model, we assume that some reasonably large black size 1s good enough

CHAPTER 4. EVALUATION ENVIRONMENT FOR MULTIPROCESSORS 73

to reduce cache miss costs to a negligible level while at the same time being small enough 1o it i
any reasonable processor cache. A block size of 32 fits these requirements quite well A code that
produces one cache miss for every 32 floating-point operations will generilly be nearly as efficwent
as a code that produces no misses at all. The 32 by 32 block that must remam in the cache require
3K of storage. which would fit in virtually any cache. Note that update operations that involve sets
of more than 32 columns can be handled quite easily by breaking them up inte 32 column chunks

The other important part of the update computation 15 the addition of the update nto the
destination. We assume that for each entry in the update, the processor must fetch that «niry plus
one entry in the destination from memory. In other words. we assume that nothing s availlable
from the cache. The reader may object that the update would be available in the cache since it was
computed soon before, but our assumption is that the update is generally larger than the cache and
thus does not remain there.

This thesis will use this performance model to simulate a variety of matrix operations not all of
which are directly related to the two steps of the supernode modification operation discussed above
Rather than explicitly enumerating the operations that we model and the costs we assign to them
we instead simply note that we use the same framework. where blocks are loaded into the cache and
reused several times when possible. for all such operations. The majonty of these operations are
based on dense matrix-matrix multiplication. which lead to identical formulations However even
the ones that are not still have very natural block interpretations.

To validate the use of this performance model. subsequent chapters will compare the predictsd
performance with actual performance on the DASH machine. Although the performance maodel 1
not meant to model the DASH machine exactly, we will see that the two actually produce quite

similar results.

4.3.3 Communication Costs

The other important part of our performance model is interprocessor communication Qur model
assumes that communication takes places in the form of ‘messages’. We assume the time required

for a message to move from its source to its destination is;
a + JL

where a is the fixed cost of sending a message. J is the additional cost of each word of data in the
message, and L is the length of the message. The quantity a is a measure of the overhead associated
with a3 message, while 3 i1s a measure of the bandwidth of the interconnection network

To obtain values for o and J, let us consider the Stanford DASH machine. This machine can
move a 16-byte cache line of data (two words) between two different clusters in 100 cycles. 1t ran

periorm a multiply-add in roughiy 7 cycies, giving a J of 100/7 = 14 To obtan an estimate for a

the fixed cost of initiating a message. we assume that the machine uses a software message scheine

CHAPTER 4. EVALUATION ENVIRONMENT FOR MULTIPROCESSORS e

To initiate a message transfer. the source processor would enqueue some indicatur that s message
is avallable in the input queue for the destination processor. The destination would then have 10
dequeue 1t before initiating the transfer We assume ihat this exchange requires roughly 1000 cyeles
giving an a of roughly 300.

Note that our estimate for J is soniewhat pessimistic in the context of more general parallel
machines, especially those with special-purpose hardware for handling messages tand even for the
DASH architecture, as we will explain shortly) Qur estimate above assumes that a bloeck s moved
one cache line at a time between processors; a more specialized message passiag svstem would send
the block in a more pipelined fashion.

Let us consider briefly where both 3 and a lLie for paraliel machines with more speciahized message-
passing support. One example. the Intel Touchstone DELTA multiprocessor. achieves around 1
double-precision MFLOPS per processor on programs that generate few cache misses It provides
around 25 MBytes per second of interprocessor communication bandwidth. Thus it performs a
floating-point operation in roughly 25 nanoseconds and it can transfer an ¥-byte word of data between
processors in 320 nanoseconds, giving a J of 13, The fixed cost of sending a message 1s roughly 160
microseconds [46]. giving an « of 6500. (Note that we are assuming contention-free messages to
compute J here. We will discuss how we handle contencion shortly). The newer Intel Paragon
machine provides roughly 50 MFLOPS per processor and 200 MByies per second of bandwidth
giving a 3 of around 2. The fixed cost of a message is roughly 30 microseconds. giving an a of 1560
The Thinking Machines CM-5. on the other hand. provides 128 MFLOPS per processing node and
20 MBytes per second of communication bandwidth, giving a J of arcund 50 The fixed cost of
sending a message is roughly %6 microseconds. giving an a of roughly 11000. In our performance
model, we use aggressive values of o = 300 and 3 = 10, since the trend in both of these 1s decidely
downward.

Another important aspect of our communication model 1s that 1t assumes that the cost of 4
message 1s a latency cost only. Neither the source nor the destination processor sits idle when
a message is being transferred. The source simply indicates that a message should be sent and
continues on with other work. At some later time, determined by the latency model described
above. the destination processor is notified that the message has arrived This assumption is meant
to account for the fact that most distributed-memory machines contain message coprocesscrs that
handle the mechanics of moving the message. Note that the DASH machine. as described. does neat
fit this model. The destination processor must wait while {6-byte pieces of the message are maoved
The DASH architecture does have the ability to hide the cost of sending a message from the involved
processors through the use of a non-blocking prefetch instruction {35]. The actual DASH machme
1s unable to achieve the full benefits of this provision. however, due to limitations in the processors
from which the DASH machine was built.

A final aspect of our communication model addresses the 1ssue of contention 1n the interconnection

CHAPTER 4. EVALUATION ENVIRONMENT FOR MULTIPROCESSORS 7o

Table 27 Benchmark matrices

| | Name [Description | Equations | Non-zeroes |
1. | GRID100 3-point discretization of rectangular region 16.000 34 600
2. | GRID200 5-point discretization of rectangular region 40.000 159 200
3. { BCSSTK15 || Module of an Offshore Platform 3,944 113 868 |
4. | BCSSTK16 || Corps of Engineers Dam 4 884 285 4494
5. { BCSSTKI17 || Corps of Engineers Dam 10.974 117676,
6. | BCSSTKI18 || Nuclear Power Station 11.94% ¢ 137 142]
7. BCSSTK?29 || Nuciear Power Station 13.992 { HU5 146

Table 28: Benchmark matrix statistics

Floating-point | Non-zeroes
Name operations in factor

1. | GRIDI0OO 15.707.205 250.835
2. | GRID200 137.480.183 1.280.743
6. | BCSSTK15 165.039.042 647.274
8. 1 BCSSTK16 149,105.832 736,294
8. | BCSSTK17 144.280.005 994.885
7.1 BCSSTKI18 140,919,771 650.777
%+ BCSSTK29 393.059.150 1.680.804

network. We have so far assumed that the message transfer time depends only on communication
bandwidth. Realistically, however, (his time will also depend on the amount of traffic that is globaily
placed on the interconnect by all processors. A saturated interconnect will clearly delay messages
Rather than attempting to incorporate some notion of interconnect contention into our latency
model. we will instead look at bandwidth demands independently. The runtime of a computation
will be computed using strictly contention-less latency estimates, and the bandwidth demands of
that computation will then be examined to determine whether the assumption that communication

was effectively contention-free was realistic.

4.4 Benchmark Matrices

We will use a somewhat different set of benchmarks to evaluate parallel factorization methods The
matrices in this new set are described in Table 27 and Table 28. The primary difference between
this set and the previous one is that we have removed some of the smaller matrices and added a few

larger ones. QOur assumption is that parallel machines will generally be used to solve larger matrices

Chapter 5

Parallel Panel Methods

This chapter will consider efficient sparse Cholesky factorization on parallel machines with hierar-
chical memoty systems. We have two primary objectives in this chapter The first is to describe a
parallel method that makes good use of a memorty hierarchy. and the second 1s to investigate and
understand the performance of this parallel method.

Several methods have been proposed for performing sparse factorization on parallel distributea
memory machines, including the fan-out method (22], the fan-in method {8]. and the mulufrontal
method [9, 34]. These approaches all distribute the computation by assigning columns of the matnx
to processors. Unfortunately, the computational primitive for a column-wise distribution is a column-
column modification, an operation that gives poor data reuse and low performance on marhines
with hierarchical memory systems. The parallel factorization approach we consider in this chapter
is a straightforward extension of a column-oriented approach. Rather than distnbuting columns
among processors, our apptoach instead distributes sets of adjacent columns from within the same
supernode, which we call panels. By working with sets of columns. a panel method can obtain
many of the same benefits that were obtained earlier through the use of supernodes in sequentiai
factorization. While panels can be integrated into fan-out, fan-in, and multifrontal methods. we
will only study a multifrontal panel method. The multifrontal method s generally considered to
give higher performance than the other two parallel methods [9]. As confirmation. we note that oar
panel multifrontal implementation provides higher performance than our panel fan-sut and fan-in
implementations.

To clear up a potential source of confusion, we note that the panels we use in this chapter
differ somewhat from those of Chapter 3. Previously, the term panel referred to a contiguous set of
columns that fit in the processor cache. Here. a panel is any set contiguous set of columns. [t can
be larger than the cache.

We begin this chapter with a brief description of the process of parallel sparse factorization

including a description of the parallel multifrontal method and a description of our panel extension

CHAPTER 5. PARALLEL PANEL METHODS

~1
~1

to this method. We then present petformance results from our parallel panel mulufrontal inple-
mentation. The results indicate that panels are a valuable addition to a parallel method. giving
two- to three-fold performance improvements over column approaches. However, the results are also
somewhat disappointing in that parallel speedups are well below linear over a supernodal sequential
code.

We then turn our attention to obtaining an understanding of the achieved performance Several
factors that influence performance are described. and the impact of each of these factors on overall
performance is investigated. We find that the main factor that lumuts parallel performance 1s the
dearth of concurrency available in the sparse problems we consider. and indeed in virtually all
sparse problems. This lack of concurrency is found to be quite constraining for moderately parallel
machines. Furthermore, we find that concurrency grows extremely slowly with the problem size Asa
result. large parallel machines would require enotmous problems to achieve reasonable performance
We also find that while concurrency is the most severe hmiting factor for performance. it is net
the only factor. Communication costs, load imbalance. and task scheduling are also found to play
important roles. We briefly consider ways to alleviate some of these factors, but conclude that
in the absence of significantly higher concurrency any such approaches would lead to only munor
performance improvements.

Finally, we use this understanding of achieved parallel performance to investigate the important
question of how to choose panel sizes so as to maximize performance. The most important factors
that must be traded off are the data reuse benefits that result from larger panels and the loss of
concurrency that comes with these larger panels. We describe a simple method for determmming a
reasonable choice that balances these two considerations. We then discuss related work, and finally

we present conclusions.

5.1 The Panel Multifrontal Method

Let us begin by describing the parallel panel multifrontal method. We start by describing the
column-oriented multifrontal method and later discuss the modifications necessary to perform the

computation using panels.

5.1.1 General Structure

The parallel multifrontal method is perhaps hest explained using the domain/separator model of
sparse factorization [9]. We use a simple 2-D grid problem (Figure 18) as our example The rhm-
nation tree play an important role 1n paralle] factorization, so we include the elimination tree of
the example matrix in the figure. This subsection will present a very high-level deseniption of the

parallel factorization process, with more specific details to follow in the next subsection

CHAPTER 5. PARALLEL PANEL METHODS i

Figure 18: A simple grid example.

The process of factoring a sparse matrix on a parallel machine can be thought of as a divide-
and-conquer process. The division is accomplished by finding separators in the graph representation
of the sparse matrix. A separator is a set of nodes that breaks the graph inte some number of
disconnected pieces when removed. In the example, separator SO divides the graph into two preces
one to the left and one to the right. These pieces are referred to as domains. In the ehmination tree.
the separator nodes form a straight-line path. domains form distinct subtrees of the separator nodes
One important property of these domains is that they are computationally independent. nodes n
one domain are not affected by nodes in other domains. Another important thing to note 1s that the
separator nodes form a supernode in the sparse matrix. Thus, the terms separator and supernode
are synonymaous.

On a parallel machine, a separator clearly forms the basis for a division of work. Some subset of
the available processors can be used to factor each domain that results from a separator. Once these
domains have been factcred, then the available processors can cooperate to factor the separator
that formed them. Naturally. the factorization of a domain can be further sub-divided by finding
subsequent separators. In the example. separators S1 and S2 divide the two domains formed by
separator S0, resulting in four domains. labeled D3 through D6.

Constider the factorization of the example matrix on a four processor machine. Two processors
would be assigned to each of the domains created by separator S0 Simularly, a single processor
would be assigned 10 each of the four domains created by separators SI and S% (assume tha
processor P, handles domain D, 3). We refer to a domain with a single processor assigned to 1t as an
owned domain. The computation would begin with each processor factoring their respective swned

domains. Processors would then cooperate to factor the separators that formed these domams

CHAPTER 5. PARALLEL PANEL METHODS 79

Thus, Py and P; would factor separator S1. and similarly P; and P3 would factor S2. Finally. all
processors would cooperate to factor separator S0.

Note that the notion of domains being divided into smaller domains by separators does not stop
at the point where a domain is wholly owned by a processor. In general. any domain in the sparse
matrix can be subdivided into smaller sub-domains.

Before proceeding, we should first point out two important relationships between domains. sep-
arators, and columns. First. there is a one-to-one mapping between domains and separators. A
domain can be uniquely identified by the separator at its root and vice-versa. And second. a node
in the graph (and thus a column in the matrix) belongs to a hierarchy of domains. but it belongs to

one and only one separator.

5.1.2 Multifrontal Method

The description so far has been intentionally vague about the details of how processors actually
cooperate to factor a portion of the matrix, primarily because there are several ways to perform
this cooperation. We now briefly describe one way, the parallel multifrontal method [9, 34]. The
multifrontal method is a column-oriented method, meaning that the c.irputation is performed in
terms of columns of the matrix. and columns are distributed among processors. The actual mechanics
of the parallel multifrontal method are intimately related to the elimination tree of the sparse maftrix.
As was the case in the sequential multifrontal method, the most important data item in the parallel
multifrontal method is an update from an entire subtree of the elimination tree to an ancestor column.
The sequential and parallel methods work with these updates in very different ways, however. Recall
that the sequential multifrontal method kept all updates from a subtree together in a single lower-
triangular frontal update matrix. In contrast. the parallel method works with individual column
updates. never actually collecting them together. In fact, two updates from the same subtree will
often reside on entirely different processors.

To be more precise, consider a subtree D of the elimination tree. This subtree contains some
set of columns, and these columns produce updates to ancestor columns. Recall that the update to
some ancestor column j is computed by taking advantage of th_ elimination tree structure. Assume
the domain D is divided into subsequent domains D, by separator S. Then the update from D to)

is equal the sum of the updates from D, to j plus the updates from the columns in separator 5 to J.

update(j. D) = Z update(j, D) + Z update(j k).
kES
The update(j, D;) are computed recursively in child domains. The update(j, k) are computed by
adding a multiples of columns & into the aggregate update. In the parallel method. responsibility for
computing the update update(j, D) is assigned to a particular processor. Thus. in order to compute
an update(j. D), the responsible processor must receive all update(j, D;) as well as all columns &k 1n

separator 5.

CHAPTER 5. PARALLEL PANEL METHODS KU

The parallel multifrontal method performs the actual factorization in terms of domains and
separators as follows. Each processor is assigned some set of matrix columns. The non-zeroes of
these columns are storted in the local memory of that processor. Each processor 1s also assigned
responsibility for computing a set of domain-column updates. For each update update(;. D). a
count is kept of the number of update(j, k) and update(j, D,) that must eventually be added into it
so that it will be possible to determine when a domain-column update is complete.

In performing the factorization, processors exchange two types of messages: completed column
messages and completed update messages. Processars act on received messages as follows. When a
processor receives a completed update update(j, D;) from another processor. the receiving processor
adds the update into update(j, D), where D is the parent domain of D;. When a processor receives a
completed column &, where k belongs to the separator at the root of some domain D, the processor
locates the set of updates update(j, D) that it is responsible for computing. The processor computes
the new contributions to these updates that are generated from the received colurnn. and adds these
contributions into the appropriate domain-column update.

One very important class of domain-column updates update(j, D) is those for which j € 5 and
S is at the root of D. Clearly, once such a domain update is complete, it contains all updates that
will ever be added into the destination column j. Thus, once the update is subtracted from the
destination column, a cdiv() can be performed on that column, and the column can be broadcast
to all processors that produce updates that tnvolve it. In other words, if the column is a member of
the separator at the root of domain D, then the column is broadcast to all P that are responsible
for some update(j, D).

5.1.3 Parallel Multifrontal Example

To make the above description more concrete, let us consider the actual mechanics of a simple
example. A reader who is familiar with the parallel multifrontal method may wish to skip to the
next subsection.

In Figure 19 we have isolated the portions of the earlier grid example that are most relevant
when the example is factored on four processors. The parallel computation would begin with rach
processor factoring the nodes that are internal to the owned domain assigned to it. The processors
would then compute the updates from these domains to ancestor columns. Assume processor P,
owns domain [); 3. Processor Py would compute all update(j, D3) for j € {37, 38. 39. 43. 44. 45}
Similarly, processor P; would compute all updates update(j, D4) for j € {37, 38. 39. 47. 48, 14}
Note that no interprocessor communication is necessary up to this potnt.

Now constder domain D1. This domain produces updates to nodes 37 through 39, and 43 through
49. Processors Py and P, cooperate to produce these updates. Assume that P, is responsible for all
update(j, D1) for even j, and P, is responsible for the updates with odd ; The nodes in separatur

S1 are also divided among Py and P,. Assume that Py owns node 38. and P, owns 37 and 39

CHAPTER 5. PARALLEL PANEL METHODS K]

D1 D2

Figure 19: Grid example.

The next step in the computation involves sending the updates from domains D3 and D4 to the
processors that are responstble for the corresponding updates from the parent domain D1. Thus,
for example, P; would send update(37, D3) to P;, where it would be added into update(37. D1).
Similarly. £, would send update(37, D4) to P, (itself), to be added into update(37. D1). The same
would occur for all other updates from D3 and D4.

Once P has received the two child updates to column 37, then update(37, D1) is complete. Since
node 37 is a member of the separator at the root of D1, it has now received all updates that will be
done to it. The update is added into column 37, a ¢div(37) is performed, and then column 37 is sent
to all processors that produce updates from domain D1. This is just Py and P;. When processors P,
and P, receive column 37, they use it to modify all update(j, D1) with even and odd j, respectively
One such update on Py is update(38, D1}, which is now complete. After adding the update into
column 38 and performing a cdiv(38), processor Py then sends column 38 to Py and P;. The result
will another set of updates and the completion of column 39. Column 39 is then sent to Py and £.
producing updates. At this point, all updates from D1 are complete. Of course, while P, and P,
were computing updates from D1, P; and P3 were simultaneously computing updates from D2.

The final step in the computation is the computation of 50. We ran assume these nodes and
the corresponding updates are distributed evenly among all four processors. The computation of
50 would begin when update(43, D1) and update(43, D2) arrive at the owner of update(43. D0). a1
which point column 43 would be complete and it would be sent to all four processors. The mechanics

of the remainder of the computation are hopefully now clear to the reader.

CHAPTER 5 ¢{4RALLEL PANEL METHODS K2

5.1.4 Implementation Details

Several implementation details are important for the parallel multifrontal method. most having to
do with the non-zero structures of the columns and the domain-column updates. These details are
important when considering the means by which domain-column updates are actually computed

A domain-column update update(j, D} in the multifrontal method keeps the same non-zero struc-
ture as the columns in the separator at the root of D. Recall that the separator columns form a
supernode and thus all share the same non-zero structure. The benefit of such an update storage
scheme 1s that the update from a column k£ € S to some ancestor column j can be added into the
appropriate update(j, D) without considering sparsity structures. Since both k and update(j. Di
have identical structures, the update can be added directly into update(j. D) using a dense DAXPY
operation. Since most of the work in the computation involves adding column updates into aggre-
gate domain updates, the vast majority of the parallel computation is performed as dense DAXPY
operations.

The point when non-zero structures become important is when an update update{;. D;) is added
into its parent update, update(j. D). The two updates generally have different sparsity structures
{with the parent structure being a superset of the child structure), so some non-zero matching must
be performed. This matching can be done by computing a set of relative indices {7. 42], indicating
where 1n the destination a particular source non-zero can be found. Given such indices, it is a
simple matter to scatter the update into its parent. An interesting thing to note about these relative
indices i1s that they depend only on the sparsity structures of D, and D, and are independent of the
destination column j. Thus, a single set of relative indices suffices to add all updates from domain

D, into corresponding updates from domain D.

5.1.5 Distributing the Matrix Among Processors

One issue that has not yet been discussed is that of mapping columns and domain-column updates
to processors. The mapping naturally has important implications, affecting both the quahty of
the computational load balance and the volume of interprocessor communication. This mapping
actually has two components. The first relates to how processcrs are divided among domains. We
use the proportional mepping scheme of Pothen ard Sun [37] for this task. This strategy is discussed
in more detail in the next subsection. For now. we simply assume that each domain [has some
set of processors P(D) assigned to it. The second question, which we now briefly discuss, 1s how
individuai columns and domain-column updates within a domain are assigned to nrocessors. given
an assignment of processors to domains.

Since all processors assigned to a domain D cooperate to factor the separator S at the root of [
it 1s natural to distribute the columns in S in a round-robin manner among the processors in P
More precisely, we map columns to processors by working up from all leafs of the elimination trew

simultaneously. assigning column k 1 separator S at the root of domain D to the processor in P11

CHAPTER 5. PARALLEL PANEL METHODS 3

that has least recently received a column This strategy achieves 4 round-robin distribution within
a single separator S, and also avoids processor mapping ghtches when muoving from a separator to
its parent separator. The updates update{y. D)} from D to ancestor columns are distnibuted in g
round-robin manner among the processors in P{D) as well

An obvious question at this point 1s why this complicated mapping strategy 15 preferable to one
that. for example, allows any column to be mapped to any processor The main benehit of this
stricter mapping approach comes in the form of reduced communication volume {9] Recall that
a column & in the root separator of domain DD must be broadeast to all processors that produce
updates from D. If these updates are computed by a subset P{D) of the whole processor set. then

the broadcast can be limited to the set P(D) as well.

5.1.6 Proportional Mapping

When a separator divides a domain D into a number of child domains [,, the processor set assigned
to D must be split among the child domains D,. An obvicus goal 1s to have the child domains
complete at roughly the same time. Thus, the processors should be divided among the domains in
proportion to the relative amounts of work required by the domains. In somne cases. the decision s
simple. If a separator produces two child domains, each of which requires an equal amount of work,
and if the number of processors assigned to the original domain is divisible by 2, then clearly half
of the processors should be assigned to each child domain. However, with arbitrary sparse matrices
and unrestricted numbers of processors, the division task becomes much more difficult We use
a mapping scheme called proportional mapping developed by Pothen and Sun [37] to handle this
problem.

The basis of the proportional mapping schermne is quite simpie. If one child domain requires r% of
the total amount of work of all child domains, then % of the processors should be assigned to work
on that domain. Of course. this may not correspond to an integral number of processors. Pothen
and Sun give simple heuristics for making reasonable division choices. The detalls are not refevant

to our presentation, so we refer the reader to {37] for a precise description.

5.1.7 Panels

Having described the parallel column multifrontal method. we now discuss maodifications to this
method that improve data reuse. Recall that the vast majority of the actual computation performed
by the multifrontal method involves DAXPY operations. As we have mentioned earlier. such oper-
ations are inefficient on machines with memory hierarchies because they provide little opportumts
to reuse data.

It is clear that data reuse can be increased in sparse factorization by manipulating sets «of con-
tiguous columns with identical non-zero structures as a group. Qur approach divides each separator

that is not in an owned domain into a set of panels. where a panel 1s a set of rontiguous columns

CHAPTER 5 PARALLEL PANEL METHODS 4

¢

We use a single target panel size throughout the entire matnix That s xeparators are split it
panels that are as close as possible to the global target panel size

This change in data distnibution requires surprisingly few changes to the column parallel code
Naturally, the computatton is now expressed in terms of panel updates. with processors exchanging
panels among each other 1n order to compute doman-panel updates The most important operation
in the computation becomes the computation of a panel-panel update. which we refer ta as a proadi:
opetration. This operation ran still be performed without regard for sparsity structures, in tis case a4
a dense matrix-matrix multiplication. The mechanics of computing the update are identical 1o thoee
of a sequential supernode-supernode update operation. When all updates have been recenved hy a
panel. then a pdir{) operation 15 performed. This operation s identical to the Cormpletei) operation
in a sequential supernode-supernode method. The other unportant operation 1s the addition of
domain-panel update update(J. D) into a parent domain-panel. The primary difference in the case
of a panel approach is that the update can be sparse along two dimensions. {t can affect a subset of
the rows in the parent update. and it can affect a subset of the columns. Both types of sparsity are
easily accommodated.

Recall that the amount of data reuse that can be obtained in a supernode-supernade update
operation. or equivalently in a pmod(). is determuned by the width of the involved supernodes (or
panels, in this case). In particuiar, recall that a panel size of B results in roughly one cache nuss
for every B floating-point operations. according 1o our performance model. It is therefore desirahle

to make the panels as large as possible.

5.1.8 Supernode Amalgamation

A panel method clearly relies heavily on the presence of large supernodes in the sparse matnx to
group substantial numbers of columns into panels. While most supernodes will typically be quite
large, any sparse matrix will also contain small supernodes. To increase opportunities for our method
to collect columas together into panels, we perform supernode amalgamation {10, 17] as a first step
in the factorization. Amalgamation merges supernodes with similar non-zero structures to produce
larger supernodes. The merging is accomplished by relaxing the restriction that a sparse matrix only
contain non-zeroes. Zeroes are introduced as non-zeroes in order to give two supernodes wdentical
structures.

Two important issues for supernode amalgamation are the selection of amalgamation candidates
and the criteria for deciding whether a pair of candidates should actually be merged. Regarding the
selection of amalgamation candidates. the most logical choice is to consider merging a supernode
into its parent in the elimination tree. We consider all such pairings. To evaluate a particular
amalgamation candidate, we use our machine performance model. We compare the modelled cost «f
performing all updates from the two individual supernodes with the cost of performing the updates

from the larger supernode that would result after amalgamation. Amalgamation is performed if the

CHAPTER 5. PARALLEL PANEL METHODS »5

3 3
3 a
v 2]
3 3
: :
a a
- — Simulated spesdup
- DASH spsedup
49
z -
1Y — Simuiated spaadup
- N. DASH spesdup
14
o L : 1 4 . L H i . . ; i : i
4] 12 " 20 E] » 32 . 2 s 12 " » 34 » =
Panel size Pane size
BCSSTK1S, 16 processors BCSSTK2G. 32 processors

Figure 20: Parallel speedups for two sparse matrices

latter cost is smaller. The empirical results presented in this chapter will all assume that supernode
amalgamation has been performed prior to the factorization. The cost of this amalgamation is
actually quite maodest. We have found that it increases the runtime of the symbolic factorization

phase by less than 10%.

5.2 Parallel Performance

Having described the parallel panel multifrontal method, we now look at the performance of our
implementation. Figure 20 shows speedups for the parallel method, corpared with a left-lonking
supernode-supernode sequential code. The curves on the left show speedups for matrix BCSSTK15
as a function of panel size, when factored on 16 processors. The curves on the right show sunilar
data for matrix BCSSTK29 when factored on 32 processors. These two performance curves are
representative of the behavior we have observed for a wide range of matrices and machine sizes. We
will present performance results for other matrices later in this chapter. Note that these curves show
both simulated speedups and speedups from the Stanford DASH machine. For reference. the DASH
machine achieves roughly 8 MFLOPS for a sequential code.

An important thiug to note from this figure is that our parallel performance model gives rela-
tively accurate performance predictions, even though the model attempts to capture only the most
basic aspects of parallel performance. Modelled performance differs somewhat from achieved perfor-
mance, especially for BCSSTK29 on 32 processors, but even then the curves have the same general
shape. We believe the observed difterences are primarily due to the assumption in the performance

model that interprocessor communication costs can be hidden from the processors. Since the DASH

CHAPTER 5. PARALLEL PANEL METHODS x4

machine dces nct hide these costs. and sinc» communication volume s higher for the larger machine
BCSSTK29 on 32 processors exhibits the larger difference between modelled and actual performance
Overall. however. we believe 1t 1s reasonable to expect conclusions about modelled petformance 1o
apply to real performance as well

Another important thing to note from this figure is that the panel size has a significant perfor
mance impact. For example. a panel size of 8 gives nearly 3 tumes the performance of pane] size of |
{a column method) for BCSSTKI15. Sumilarly. a panel size of 4 roughly doubles performance fir BC
SSTK29. Another interesting thing to note is that the best panel size 15 not constant Performance
increases significantly when the panel size 1s increased from 4 to % for BCSSTR15 For BUSSTR 2.
however, performance decreases somewhat. From this and the previous observation. 1t 1s safe 1o say
that the choice of panel size is an important issue for maximizing performance 1n a panel methad

We will return to this issue later in this chapter.

5.3 Performance Bounds

At this point, it is natural to further investigate the performance of the panel multifrontal method
The issues we wish to understand are (1) what factors determine panel method performance and (2)
to what extent can this performance be improved. It is our belief that the best way to understand
parallel performance is to compare achieved performance with simple performance upper bounds
Within such a context, performance can be interpreted in two parts. First, one can look at how close
achieved performance is to the upper bounds and consider the reasons for any abserved differences
Second, one can look at the upper bounds themselves and consider the reasons why they are less
than perfect. This is the general approach that is taken in this section. We begin by describing twe
simple but important upper bounds on parallel performance, the maximum load and cntical path

bounds.

5.3.1 Maximum Load: Load Balance and Load Efficiency

One obvious factor that bounds the performance of a parallel computation is the compntationai
load assigned to each processor. Specifically, the computation cannot complete in less time than the
maximum of the times taken by the individual processors to perform the tasks assigned to them.
ignoring all dependencies between tasks. This bound is typically thought of as a load balance bound.
with the underlying assumption that performance is less than ideal because some processors receive
a larger fraction of the global work pool than others. In the case of a panel method. howerver
less-than-ideal performance is also caused by changes in the size of the global pool. While one
potential measure of the size of this pool, the number of floating-puint operations in a panel-orented
factorization clearly rema:ns fixed, the true measure. the number of operations multiplied by the

cost of each operation. actually changes with the panel size. The maximum load assigned to a

CHAPTER 5. PARALLEL PANEL METHODS AT

H
£
1

-
N
8
L

Processor athciency
Processor athcency
s

-
3
T
.

— Sumuidted speedup

Simulaied speedup Load Balarnce

o+ Load Balance
-~~~ (Cn Path
-~ - Cntcal Path Cnncal Pa
i H | 1 " N L A H i - L |
9.0 s " E E] M [- “ el 2 a4 s 18 n “
Panei size Panel s:28
BCSSTK1E. 16 processors BCSSTK29 32 processors

Figure 21: Parallel speedups for two sparse matrices. versus performance upper bounds

processor thus aiso depends on the load efficiency. or the time required 1o perform each operation
The maximum load performance upper bound is easily determined by computing the modelled costs

of all tasks assigned to each processor.

5.3.2 Critical Path

Another important performance bound in a parallel computation comes from the critical path. Tt
bound simply states that the computation cannot complete in less time than the time required
for the longest chain of dependent tasks in the computation. In the case of sparse factonization
every path from a leaf in the elimination tree to the root of the tree forms a dependent chain. with
each step on the chain involving a pmod() of a parent panel by its child. the communication of the
resulting update from the child processor to the parent processor. the addition of that update in.
the parent, a pdiv() operation on the parent, a pmod() from the parent to its parent, and <~ on
Again, this bound is easily computed using our performance model. We will discuss both of these

bounds in more detail shortly.

5.3.3 Performance Compared to Bounds

Figure 21 compares simulated parallel speedups with the two upper bounds from above As ran
be seen from the figure, parallel performance is well predicted by these bounds. For small panels
performance is nearly equal the maximum load bound. The main imiting factor is the linuted
reuse of data and thus poor load ethicienry. As the panel size incr ases. opportunities for data reyse

increase and performance improves. However, at some point the critical path becomes constraiming

CHAPTER 5. PARALLEL PANEL METHOD> b

Processors are forced to sit idte because there 15 a hmited amount of work that can be performed
in parallel. Performance flattens and eventually begins to decrease. We note that while this fig-
ure presents results for only two matrices. a number of other matrices and machine sizes that we
examined vielded similar resuits.

While we have touched on some of the more general issues that determine parallel performance
it i3 important to consider these factors in more detail and also to consider the broader spectrum
of 1ssues that limit parallel performance. This subsection will now undertake a more systematie
investigation of the factors that determine parallel performance. We perform detaifed investigations
of the maximum load upper bound, the critical path upper bound, task scheduling issues. and
interprocessor communication volumes. We do this to determine the individual unportance of the
various limiting factors for the two example matrices and also to consider how these factors atfect

performance for other matrices and other parallel machine sizes.

Maximum Load

As mentioned earlier. one important factor in determining parallel performance 1s the maximum
load assigned to any processor. Let us now look at this bound in terms of its individual components
One factor that plays a role in the maximum load is the quality of the load balance. The
load balance 1s primarily determined by the mapping strategy. Recall that we use a proportional
mapping strategy, which performs a recursive assignment of subtrees of the elimination tree to
processor subsets. This strategy clearly leads to some amount of imbalance, since an 1deal division
will not necessarily correspond to an integral number of processors being assigned to a subtree.

The load imbalance that results from this mapping strategy can be better quantified by comparing
the maximum amount of work assigned to a processor by this strategy with the amount of work that
would ideally be assigned to a processor {which is simply total work divided by P). We compute
the former by assuming that for each domain D in the sparse matrix, the work required to compute
updates from panels in the separator S at the root of D 1s distributed perfectly among the processors
P(D) assigned to that domain. For the two example factorizations, BCSSTK15 on 16 processors
and BCSSTK29 on 32 processors, the processor that receives the maximum amount of wark gets
27% and 49% more work than the ideal, respectively. Best-case processor utilizations for these two
problems are thus 79% (1/1.27) and 67% {1/1.49), respectively.

To provide a broader picture of the effect of load balance, Figure 22 shows maximum processor
utilization numbers due to load imbalances for a variety of matrices and machine sizes. While the
data points are sufficiently chaotic in this figure that it would be difficult to give a precise description
of the effect of load imbalance, 1t appears safe to say that load imbalances limit processor utilization
levels to between 70% and 85% of what they might be with perfect load distribution.

We should note that even these estimates are optimistic, since they assume that the work from a

particular separator is distributed perfectly evenly among the processors assigned to that separator

CHAPTER 5. PARALLEL PANEL METHODS X

] 3 :

Maximum processor utthzation

©
3

GRID100

BCSSTK1S
8CSSTK16
8CSSTK17
8CSSTK18
8CSSTK26

[X 3 of

080

O % X 4+ O

0.0 Il Lo H 5. L Il
1 Ed 4 . 1. 2 -

Processors

Figure 22: Maximum processor utilizations when considering load imbalance alone

In reality, a separator may produce some small number of updates (especially with large panels)
that must be distributed among some large number of processors. An obvious question here 15
how the actual work distributions that result from real assignments of panels and panel updates to
processors compatre with the optimistic estimates above. We have found that the standard round-
robin approach, where the panels and panel updates at the root of a domain D are assigned round-
robin to the processors in P(D), yields a distribution that is almost identical to the optimistic
distribution over a range of panel sizes. With both BCSSTKI15 on 16 processors and BCSSTR 24
on 32 processors, for example, any panel size choice between 1 and 32 gives a work distribution
that is within 10% of the simple prediction. Panels larger than 32 naturally result in worse work
distributions, but more important constraints than work distribution would come into play in such
cases,

When considering how load imbalance would affect performance over a wider range of matr-
ces and machine sizes, an intuitive analysis of the proportional mapping approach indicates that
imbalance will represent a constant-factor drag on performance in both the best and the worst case

The other important component of the maximum load bound is load efficiency. This efficiency
is determined primarily by the panel size. With a panel size of B, most of the computation involves
the modification of one panel of width B by another. A larger panel size B thus leads to more data
reuse and a more efficient computation.

Of course. some portions of the computation are unaffected by the panel size choice since only
superncdes that are not in owned domains are split into panels. As it turns out. supernodes within

owned domains play a relatively small role in the factorization. Figure 23 shows the fraction of ali

CHAPTER 5. PARALLEL PANEL METHODS s

- 100

<

2 & GRIDYW 0O
8 o GRID200
2 ome > BCSSTK1A
H + BCSSTX16
< x BCSSTK17
§ = BCSSTX18
q e o BCSSTK29
.
B
=]
k-]
S!“
E
b

Ly 4

800

Figure 23: Fraction of all floating-point operations performed within owned domains

floating-point operations performed within owned domains for several matrices. For any substantial
number of processors the majority of the computation occurs outside owned domains. The load
efficiency is thus heavily dependent on the panel size.

A simple combination of these two individual effects, load balance and load efficiency. gives the
overall maximum load upper bound. For example, if load efficiency limits parallel performance 1o
75% of ideal. and the load balance is such that parallel speedups are at most 80% of ideal. then the

overall maximum load bound would constrain performance to 60% of ideal.

Critical Path

The other important upper bound on performance is the critical path. Clearly this path is affected
by the panel size as well. In this case. however. the relationship is not immediately obvious W
now consider this relationship in more detail.

To help simplify our discussion of the critical path upper bound. we make use of critical sub-paths
The length of a critical sub-path from a panel J is the shortest amount of time that must elapse
between the time panel J has teceived all panel modifications and the time the entire factonization
can be completed. The length of a CSP can be computed quite easily using the following recursive

exXpression:
CS5P(J) = T{pdiv(J))+T{pmod(J, parent{.J)))+ T(sendupdate(J. parent(.J))) +CSPiparent{] 1

In other words, if panel J has not yet been completed. then the whole computation cannot comyplet..

until a pdiv(.J) is performed. an update is computed from J to its parent. and the update s sent to

CHAPTER 5. PARALLEL PANEL METHODS l

the parent. At this point, the best-case completion time is determined by the critical sub-path of
the parent panel.

The critical sub-path CSP(J) can be computed for all J by a simple top-down traversal of the
elimination tree. The maximum value overall determines the critical path for the whole computation
Since C'SP(J) i1s always larger than C'SP(parent(J)}), the critical path always begins with a leaf w
the elimination tree.

When owned domains are introduced, the notion of a task changes somewhat. An owned domain
encapsulates several panel tasks into a single larger domain task We assume that a processor handles
all owned domains assigned to it, both factoring the columns within the domain and computing
domain-panel updates from the domain to all affected panels. before moving on to separator tasks
Under this assumption, it is quite straightforward to assign a completion time estimate (7}, 1o

each owned domain. Each domain would then impose the following constraint on parallel runtune
runtime >= CT{D;) + T(sendupdate(D,. parent(D,)}) + CSP{parent{ D)),

Since domains occupy the leaf positions in the elimination tree. the true critical path for the whole
computation begins with a domain (if a separator has no domains as children, then assume the
separator is the parent of an empty domain). Thus, the critical path 1s the maximum over all
domains of the above domain runtime bound.

While the above expression allows us to determine the length of the critical path given a panel
size B, it unfortunately says nothing about how the path length changes with B. To understani
the effect of the panel size, let us d=fine CSP(J, B) to be the length of the critical sub-path from J

with a panel size of B. From before we have:

CSP(J.B) = T(pdiv(J))+ T(pmod(J. parent(J))}) + T(sendupdate(J parent{.J})) +
CSP(pareni(J), B).

Simple computations reveal that the runtime costs of these operations are:
CSP(J,B) = B*L;Top(B) +2B*L;T,p(B) + BL;3 + CSP(J'. B),

where L, is the length of the first column in panel J, and J' is the parent panel of J in the elimination
tree. Recall that 7,,(B) and § were defined in Chapter 4 to be the average cost of a ﬁoatm{;-pmm
operation and the time to communicate one word of data, respectively. Note that several lower-arder
terms have been dropped.

Now let us compare the length of this path to the length of the path from the first column in J

to the first column in J' when using a panel size of 1.

CSP(J. 1) = BLyTop(1) + 2BL;Top(1) + BL;3 + CSP(J' 1),

CHAPTER 5. PARALLEL PANEL METHODS WY

These two sub-path expressions bear a stmple relationship to each other. If the cntical sul-path
expression is broken into a computation term and a communication tectr, we find that

Top(B)

CSP(J.BY=B
(J.B) = B

('}.“Pcomp(‘]A 1) + CSPeomm(. b

Thus, the path length for a panel size of B can easily be esuymated from the computation and
communication components of the critical path for a panel size of 1. The amount of computation
on the critical path increases roughly linearly in the panel size. while the amount of communiration
rernains constant. The owned domain at the bottom of the critical path 15 unaffected by a change
in panel size. which mitigates the effects of an increased panel size somewhat, but we note that the
work within a domain will typically be a small part of the path.

We observed in the earlier examples that the critical path limited parallel performance. The
path was too long to allow for a large panel size, thus forcing a tradcoff between the efficiency «of
the individual processors and the number of processors that could effectively cooperate. To obtan a
broader feel for the importance of this critical path bound, let us consider the length of the critical
path for a range of matrices. It is actually somewhat easier to think about the rritical path as
it affects concurrency, the maximum parallel speedup that can be obtained for a problem. As we
mentioned earlier, concurrency is computed by dividing the sequential runtime of the computation
by the length of the critical path.

To simplify the analysis somewhat. let us first consider Jdense factorization. A simple computation
reveals that concurrency for a dense n x n matrix. using a panel size of B, is:

n

IBT.,(B) + 33

In other words, the maximum speedup and thus the maximusn number of processors that can be used
for an n x n problem is proportional to n/B. This is not at all surprising. since columns are being
distributed among processors and there are only n columns in the matrix. Recall that the amount of
work performed in dense factorization is n3/3. Thus the amount of work in the problem grows much
more quickly than the number of processors that can be used to perform that work A factor of two
increase in roncurrency requires a factor of eight increase in work. From this disparity in growth
rates, one can conclude that large parallel machines will require enormous problems. Equivalently.
one can conclude that concurrency will be quite limited for reasonable problem sizes.

Of course out interest in this chapter is not on studying dense problems. but rather sparse
problems. We fina that sparse matrices suffer from the identical scalability problems. Specifically.
when normalized to do the same number of floating-point operations, 2-D sparse gnid problenw
only exponse roughly 3 times more concurrency than dense problems; 3-D grid problems expose
less than two times more. To give some idea of how much concurrency s available in less regular
sparse problems, Figure 24 plots available concurrency against floating-point operations for a vanety

of matrices from the Boeing/Harwell sparse matrix test set. This plot shaws maximum puossible

CHAPTER 5. PARALLEL PANEL METHODS 43

Concurrency

BCSSTK's
BCSSTKE
BCSET¥7
BCSSTK18
BCSSTK29
BCSSTKIG
BCSSTK3
BCSSTK3Z
BCSSTK33
20 Gna

30 Gng
Dense

=

DOOX o+

e e

i i
100 190¢

Floatng-point operations (Million)

Figure 24: Concurrency in sparse problems.

speeduns for these matrices. due to their critical paths, under our parallel performance model’
The less regular sparse problems can be seen to contatn comparable amounts of concurrency to the
dense, 2-D gnid, and 3-D grid problems. Indeed. the growth rates appear quite similar. We therefors
expect to see the same sorts of concurrency problems for spa-se problems that we described for dense
problems.

To put these growth rates in better perspective, let us consider a single example. Matrix BC-
SSTK33 requires suughly 1.2 billion floating-point operations to factor. and it allows a maximum
parallel speedup of roughly 50. This matrix is much larger than those typically considered in paral
lel sparse factorization studies, yet it can only make good use of relatively few processors Keep in
mind that this 50-fold speedup bound is an optimistic upper bound. Now consider the case where
we want a problem with a 100-fold speedup bound instead. That problem would require roughly
8 times as many floating-point operations, or roughly 10 billion. It is clear that the problem sizes
quickly overwhelm the resources that can be brought to bear on them.

When considering the panel sizes that would be appropriate for the parallel factorization of
sparse problems. one thing that is clear is that a large panel size would cause a significant reduction
in concurrency, a reduction that most problems simply could not afford on all but the smallest »f

parallel machines.

'Note that these concurrency figures are heavily dependent on Top(1) and .. Lower values of these machine
parameters would produce higher concurrency numbers.

CHAPTER 5. PARALLEL PANEL METHODS KR

Task Scheduling

Another important issue when considering the performance of the parallel computation s the fue
that achieved performance is below both the maxunum load and critical path upper bounds a
points where the two are nearly equal (see Figure 21). a disparity that we loosely attribute to tash
scheduling issues. What we niean by task scheduling s simply that some processors sit vdle during
the eourse of the computation not because there are no tasks to be performea. but instead beeauss
tasks are not available when those processors are free to perform them

Note that achieving performance equal to the upper bounds at all times would require an ex
tremely good schedule. Consider. for example. the point where the maximum load and rritical path
upper bounds are equal. To achieve performance equal to the maximum load upper bound at ths
point, the processor with the most work assigned to it would have to be executing tasks continuously
To achieve performance equal the critical path upper bound as well. that processor would also have
to execute tasks on the critical path as soon as they are ready, an unlikely prospect 1f the processor 1
always executing some task. It is thus understandable that performance is below the upper bounds

QOverall, we have found that at the panel size where the upper bounds are least constraining
achieved parallel performance is 15% to 35% below the bounds. In other words. scheduling issues
play an important role in limiting performance. Note that scheduling 1ssues would be much less
important if there were an abundance of available concurrency. With more concurrency. processors
would be much less likely to be without a task to execute. Unfortunately. as we Jdiscussed earlier
concurrency will generally be in extremely short supply. We have generally found that any excess

concurrency is better spent on larger panels rather than on ‘slack’ to umprove the task schedule

Communication Volume

Our assumption so far has been that the time required for an interprocessor message depends only
on the size of the message and the communication bardwidth available between the source and
destination processors. Clearly this assumption is only valid if the message does not experienc
significant contention on the interconnect. Let us briefly consider the volume of communication
placed on the interconnect by this computation to obtamn some feel for the amount of contention
that might arise.

Interprocessor communication for a panel method can perhaps best be understood by looking at
how communication volume and computation volume grow with larger problems and larger parallel
machines. Communication volume for a panel multifrontal method can be shown to grow as Oin’ /1)
for an n x n dense problem. and as O(k?P) for a &k x k 2D gnd problem {24]. The rompuiation
required for these problems grows as O(n®) and O(k?), respectively Thus. 1n both cases a paned
method would require O(P/n) words of communication for every floating-point operation where »
is a measure of the problem size. Note that rommunication volume s independent of the panel sz

Now consider a factorization problem that produces a manageable amourt of communiatiom

CHAPTER 5. PARALLEL PANEL METHODS e

o

GRIG100

BCSSTK:S
BCSSTK16
BCSSTK1?
BCSSTX18
BCSSTK2G

LR J ot

Xt

o

Communicabon 16 Computation 1ato (words per FP op)

: i
) L4 18 32 -

Procassonrs

om
Figure 25 Communication to computation ratios for sparse prohlems

when using P processors. In order to increase the number of processors without averwhelming the
processor interconnect, the amount of communication per floating-goint operation shauld remam
constant. The communication to computation ratio s Q(P/n}, so consequently n must grow hinearls
with P. Recall that this growth rate 1s 1dentical to the rate required to expose sufficient conrurrencs
for P processors, and that this rate was considered excessive. Thus, communication volume s als
a crucial limiting factor.

We should note that keeping the communication to computation ratio constant may not be
sufficient to keep the processor interconiect from saturating. The problem here 1s that each ward
of interprocessor communication may become more and more expensive as the machine size grows
since it may have to traverse more and more links on the interconnection netwark In fact it -an
be shown that a constant ratio is inadequate when using a panel methad that send~ point-to-pont
messages on a machine with a mesh interconnect. This problem can be overcome 1in the multifrontal
method since it relies on multicast messages. where the identical message ts sent 10 several processors
Such multicasts can be implemented to make more efficient use of the processar imterconnect

While growth rates are interesting for understanding asymptotic behavior. 1t 1s also importan
to constder the ‘constants’ for realistic problems. Figure 25 shows communication volume figures for
several sparse problems across a range of machine sizes. The figure plots the ratio of tatal words of
communication {8-byte words) to total floating-point operations. Note that communiration solumy
growth rates are somewhat faster than linear in the number of processors for small mack mnes Thes
level off to roughly linear for the larger machines. Regarding the question of what commumieation

ratios are sustainable on real machines. this will of course depend on the spemfic parameters o f

CHAPTER 5. PARALLEL PANEL METHODS it

the machine. On teday's machines. a ratic of 425 (40 FP ops pee word of commanieationd wouhd
most likely be sustainable. When comparing these mumbers to machine cotmurnication, computation
ratios, keep in mind that the computation s only achieving roughly 509 processor utibization Ratoos

of .05 (20 FP ops per word} or more would be difficult 1o sustamn

Sumimary

In summary. a panel method faces a number of rather fornudable performance obstacles o rder

to achieve high processor utilization levels, the method would require
s an extrernely effective subtree-to-processor-subset mapping to keep load imbalances low
» a large panel size to keep load efficiencies high;

¢ an abundance of concurrency. so that the panel size can be made large to increase load efficiency

and also so that task scheduling issues would be unimportant: and
o sufficiently high interconnect bandwidth that the interconnect does not saturate

For the examples we have considered here. with matrices that require between 100 nullion and 1 bl
lion floating-point operations to factor and machines with 16 to 64 processors. rach of these factors
reduces achieved performance somewhat. The mapping strategy was seen to reduce performance by
15% to 30%. Concurrency limi*ations led to panel size choices that reduced performance by another
25%. We believe that imperfect task scheduling further reduced performance by another roughl
15%. As a result, maximum processor utilization levels were roughly 50%.

For larger parallel machines, two of these factors stand out as being particularly ronstraining
critical path length and interprocessor communication volume. Both require that a factor of two
increase in the number of processors be accompanied by a factor of eight increase 1in the number of
floating-point operations in the problem in orde; to afford any hope of achieving similar pracessor
utilization levels. In general, we would expect these problem size growth rates to be unsustatnable
As a result. more realistic problem sizes would achieve extremely low utilization levels for larger

machines.

5.4 Improving Performance

Having investigated several factors that limit parallel performance, we now briefly consider the extent
to which these factors can be improved. Recall that one source of ineficiency is Inad umbalance due
to the panel mapping. The main source of this imbalance is the need to round te an integral numbier
of processors when assigning subtrees to processor sets tn the proportional mapping. One obvious
means of alleviating this problem is to remove the requitement that the processor sets be disjomnt

essentially allowing fractions of processors to be assigned to subtrees We have performed some

CHAPTER 5. PARALLEL PANEL METHODS Y7

experiments using such a division scheme. While this scheme improves load balance significantly
also dramatically increases the difficulty of mapping individual panels to processors. The mapping
strategy must somehow share a single processor among several distinct subtrees. Using the same
mapping strategy that we used for the unmoedified method, overall perforinance was not sigmficantly
improved. The advantages of the improved load balance were almost entirely offset by the reduced
quality of the mapping.

An alternative approach to improving the load balance might use a more dynamic approach to
task distribution. For example, a processor might have a "preferred’ set of tasks. corresponding to
those tasks that it would perform in a statically scheduled computation. If a processor finds that it
has no preferred tasks available, then it would steal a preferred task of another processor One cost of
such stealing would be increased interprocessor communication, since stolen tasks would presumably
access data that is not local to the stealing processor. Initial expertments have indicated that the
communication costs of this task stealing outweigh the load balance benefits on the DASH machine

Another important limitation in a panel method is the length of the critical path. which plays a
role in determining panel sizes and ultimately limits the number of processors that can be effectively
used to solve a sparse problem. As far as the possibility of reducing the length of the critical
path, we note that this problem has received some attention (see [29] and {33]. for example). Note
that the multiple-minimum-degree ordering heuristic we used to preorder the sparse matrices 1s
known to produce ‘tall’ elimination trees and long critical paths, and thus would appear amenable
to parallelism-increasing techniques. However, we believe any improvements will be small constant
factors. The 2D grid problems. for example. are in many ways ideal for parallel machines, but they
still suffer from critical path constraints.

On the question of whether the task schedule could be improved, we note that there appear to
be significant opportunities for improvement. While finding an optimal schedule is clearly imprac-
tical, the schedule we have been using, which is implicit in the round-robin mapping of panels to
processors, may be far enough off from optimal that it can be improved upon substantially We
have experimented with a more sophisticated simulation-based mapping strategy. where the panel-
to-processor mapping is done using a rough simulation of the parallel computation. When a panel
task is mapped to a processor, the simulated time of that processor is advanced to reflect the time
at which the panel task was made available and the time required to perform that task. Each new
panel task is assigned to the first available processor that is eligible to perform that task. This
more sophisticated mapping strategy has shown initial promise, improving performance over a sim-
ple round-robin strategy by between 5% and 20%. However. this moderate overall performance
improvement weuld most likely not warrant the increased complexity of this mapping approach

In either case, the improvements discussed in this section would at best lead to small constant
factor increases in performance. The most important factors limiting the performance. the available

concurrency and the interprocessor communication volume, remain as imposing obstacles

CHAPTER 5. PARALLEL PANEL METHODS o

Simulated speedup

GRiD100

BLSSTKS
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK29

3. b 4 i
] 1 33 []

Processors

D O XX+ O

07
2

Figure 26: Performance for panel size of 8, relative to performance of best panel size.

5.5 Panel Size Selection

While the previous sections have made it clear that panel methods have some important limitations.
at the same time they are still quite useful methods, particularly for moderately parallel machin.s.
Indeed, they provide much higher performance than popular column methods. This section looks at
an important issue for panel methods that has so far not been considered, the issue of choosing a panel
size. Results from the previous section showed that overall performance varies quite dramatically
with panel size. What it did nat show was how to choose an effective size for a given sparse matrix
and a given machine size.

Given that the marginal benefits of a larger panel size B fall off quickly as B increases. a
reasoniable strategy would be to always choose some fixed. relatively small panel size. The ideal size
would be large enough so that it provides most of the benefit of large panels, while at the same time
not being so large that it swallows enormous amounts of concurrency. For our performance model.
a panel size of 8§ strikes quite a reasonabie balance. In cases where a larger panel size could be used.
a choice of 8 still yields per-processor performance that is at least 75% of peak. In cases where a
smaller panel size would have been more appropriate, a panel size of 8 still provides more than half
of maximum concurrency.

To evaluate the effectiveness of this approach, Figure 26 shows relative efficiency numbers. com-
paring performance using a panel size of 8 with the best achieved performance over all panel size
choices {under our performance model). As expected. performance for this strategy is quite reason-

able. although it is less than ideal in two ranges. For small numbers of processors. a panel size of x

CHAPTER 8. PARALLEL PANEL METHODS 4y

represents lost opportunity, since a larger panel would be quite appropniate. For large numbers of
processors, a panel size of 8 is too large, forcing processors to sit idle for sigmficant portions of the
computation.

A potentially better way to choose the panel size 1s to specifically tailor it 1o the matrix aund
the machine size. Performance results from the previous section indicated that the pomnt at whirh
petformance is maximized is heavily dependent on the maximum load and cntical path upper bounds
We now consider a panel size selection strategy based on these bounds.

Our approach to choosing a panel size considers panel sizes as falling into three different ranges
Consider the speedup graphs in Figure 21. In the first range. very small panels. the critical path
bound 1s much higher than the maximum load bound. and performance is nearly equal the maximum
load bound. With plenty of ‘slack’ in the computation, scheduling issues are less crucial and thus
processors rarely sit idle. The second range includes panei sizes for which the two upper boinds
are comparable. At such points, parallel performance is below both bounds (and performance 1s
generally highest in this range). The third range includes large panel sizes, where the critical path s
much more constraining than the maximum load and performance is nearly equal the former bound
The split points for these ranges naturally depend on the particular matrix and the particular
machine size.

Based on these simple observations about performance in the various ranges, we use the following
panel size selection strategy. The optimal panel size is clearly not within the first range. Overall
performance can be increased here by increasing the panel size. Based on empirical observation.
we consider any panetl size for which the critical path bound is more than twice the maximum load
bound to be in this first range. The optimal panel is also clearly not in the third range. Smaller
panels would reduce processor idle time without significantly decrease per-processor performance
We consider this third range to include panel sizes where the maximum load upper bound is more
than twice the critical path upper bound. The best panel size choice therefore sits somewhere within
the second range.

To find a reasonable choice within this range, we make the following assumptions. First, we
assume that when the panel size is increased, per-processor performance increases in proportion
to the increase in the maximum load upper bound. And second, we assume that the number
of processors that are active at a time decreases in proportion to the critical path upper bound
Maximizing performance is then a matter of finding the panel size where increasing the panel size
leads to a marginal decrease in the critical path upper bound that s larger than the marginal increase
in the maximum load upper bound. Note that this point can be computed quite inexpensively. We
discussed simple and inexpensive ways to estimate the maximum load and critical path upper hounds
given an arbitrary panel size earlier.

Applying this strategy to a range of sparse matrices from the Boeing/Harwell test set gives results

shown in Figure 27. This figure again compares performance using our panel selection strategy

CHAPTER 5. PARALLEL PANEL METHODS L

AR J

Simutated speedup

[} of

GRID10Q

8CSSTK1S
BCSSTK16
8CSSTK17?
BCSSTX18
BCSSTK29

o7 4 I I I
2 4 ’ [0 1 -

Processors

0Nt

% x + O

o Q

Figure 27. Performance relative to best case.

against the best performance with any panel size choice. Qur strategy is clearly quite effective.
choosing panel sizes that give 95% or more of peak performance in all cases. We should note that
this strategy has been observed to be quite robust over a variety of machine model assumptions ax
well. We looked at machines with a range of different interprocessor communication bandwidths and
cache miss costs. and in all cases this strategy chose panel sizes that gave near-optimal performance

In summary, the choice of panel size plays an important role in determuning overall parallel per-
formance. The simple strategy of choosing a fixed panel size is reasonably effective. However. higher
and more robust performance can be obtained by making use of information about performance

bounds.

5.6 DASH Performance

To give a more global perspective on the results of this chapter. we now present performance results
for the Stanford DASH machine across a range of problems and machine sizes. Figure 28 shows
speedups over an efficient sequential code (left-looking supernode-supernode) for between 4 and 1!
processors of the DASH machine when the best panel size is chosen. For 16 or fewer processors.
this best panel size is usually 8. For more than {6 processors, the best panel size is usually |
For reference, we note that the sequential code used to compute speedups performs at roughly ~
MFLOPS.

The reader should draw two conclusions from these performance results. First. parallel speedups

are relatively low for this method, for reasons that have been discussed eatlier in thus chapter The

CHAPTER 5. PARALLEL PANEL METHODS fol

Q
=
-RLY
L3
% 1“4
Z ot
]
a 2
a
1t
AL 2 od
ol
9
T
8 GRID100O
! & GRID200
. o BCSSTK1S
N + BCSSTKi8
s x BCSSTX7
< BCSSTK18
: A BCSSTR2G
1
ol i i A 4 i i
4 12 " n » » =n » -
Processors

Figure 28: Parallel speedups on DASH machine

individual processors in the parallel machine are not being very well utilized. At the same tim»
the reader can also conclude that parallel distributed-memory machines can indeed provide high
performance for sparse Cholesky factorization. In factoring a range of sparse matrices. the DASH
machine consistently provides in excess of 75 MFLOPS. and it provides well over 100 MFLOPS for
the larger matrices in the set. Thus, even with the relatively low speedups. a paraliel machine still

represents a cost-effective means of obtaining high performance for sparse Cholesky factorization

5.7 Contributions

The first contribution of the work described in this chapter is our proposal to structure parallel
factorization methods in terms of panels. While numerous methods for performing sparse Cholesky
factorization on distributed-memory machines have been proposed (a few examples are [8. 9. 22, 34}).
we are the first to have considered the use of a panel distribution to improve the use of a memors
hierarchy. This chapter has investigated a multifrontal panel method. but we note that panels can
be integrated into almost any column method, and in all cases they produce significantly higher
performance.

Another contribution of this work is that it provides the first results for a high-performance
factorization implementation on a relatively powerful distributed-memory parallel machine. Previaus
work has only considered very low performance machines (usually the iPSC/2). Parallel sparse
tactorization will only attract widespread interest once parallel machines provide performance that i«
substantially higher than that available on sequential machines. By investigating a high-performance

parallel implementation in this chapter. we have demonstrated that good performance 1s inderd

CHAPTER 5. PARALLEL PANEL METHODS fr2

possible for this computation.

Another contribution of this work comes from its emphasis on understanding paraliel perfor-
mance and characterizing the factors that hmit this performance. In particular. vur performance
modelling provides a strong foundation for understanding precisely why the parallel method obtams
the performance that it does. It also allows us to understand the impact of changes 1n the patie]
width on overall performance, and thus to choose a good panel width It also allows us to detnean
strate the limitations that are inherent in any method that works with columns (or sets of columus

in the matrix. Little work had previously been done on modelling and understanding performan-

5.8 Conclusions

This chapter has proposed and investigated a panel mult\frontal approach to parallel sparse Cholesky
factorization. We have found that panels are quite effective at increasing data reuse and thus
improving performance over a more traditional column approach on parallel machines with caches
We observed factors of two to three improvement. However, we also found that panel methods
and indeed any methods that distributes columns of the matrix among processors. suffer from two
severe limitations. They do not expose enough concurrency in the problem and they generate
too much interprocessor communication traffic. Parallel speedups over efficient sequential methods
were observed to be low for moderately parallel machines. and we would expect only moderate

performance improvements from larger parallel machines.

Chapter 6

Dense Block-Oriented

Factorization

The previous chapter showed that a panel decomposition has some severe limitations for Cholesky
factorization on large paraliel machines. both because it exposes limited amounts of concurrency and
because it generates enormous amounts of interprocessor communication traffic. An obvious alterna-
tive to a panel decomposition is a 2-D decomposition, where the matri s divided into a checkerboard
of rectangular blocks. Such an approach has been used successfully for dense factorization on large
parallel machines [44], and it has been proposed for sparse problems as well [4, 43. 45]. This chapter
will investigate several important issues for methods that use a 2-D decomposition strategy.

While our ultimate aim in this thesis is to perform sparse factorization efficiently. this chapter will
actually be devoted to a study of parallel dense factorization methods. Qur intent is to thoroughly
study several important questions that are relevant to all block methods. whether dense or sparse
Primary among these are questions of how the overall computation should be structured and what
factors limit its performance. We will consider questions that relate specifically to sparse methods
in the next chapter.

We should note that in many ways, efficient parallel dense Cholesky factorization is a well-
understood problem. Indeed, an existing method has been shown to provide excellent performance
on a wide range of parallel machine sizes [44]. There are, however. other possible approaches 1o
this computation that have understandably received less attention. It may be the case that a black-
oriented sparse method could obtain higher performance using one of these other approaches Thix
chapter investigates the performance of a range of dense factorization approaches to determine which

would provide viable frameworks for building a sparse method.

103

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION AR

6.1 Introduction

This chapter begins by considering the ways in which a parallel block-oniented dense Cholesky
factorization can be structured. Just as panel factorization could be performed using several alter
native formulations (fan-out, fan-in. multifrontal). a block decomposition leads to several Different
approaches. The primary difference among these approaches 1s in where updates to non-zeroes 1n
the matrix are performed We consider the two obvious choices. The first 1s a destination-romputes
(DC) approach, where all updates to the non-zeroes in a block are computed on the processor that
owns the destination block This 1s the approach used in {44] The second 1s a source-computes
{SC) approach, where updates are computed by the processor that owns one of the source hlacks
We will describe simple parallel programs that implement both of these approaches

The chapter continues by looking at the simulated performance of these two methods. As in the
previous chapter, simulated speedups are compared agawnst simple upper bounds. a maximum load
bound and a critical path upper bound. The DC approach is found to provide performance that
is nearly equal the upper bounds. The SC approach. on the other hand. gives performance that s
well below the bounds and quite erratic. Since a SC approach could potentially be interesting in a
sparse matrix context, we decide to further investigate its performance. We discuss the reasons for

its erratic behavior and describe modifications that improve this behavior.

6.2 Block-Oriented Factorization

A 2D decomposition divides a dense matrix into a number of square blocks. A sequenuial factorization

computation, expressed in terms of these blocks, would look like:

for K =0 to N -1 do
Lrxx = Factor(Lgg)
for [= K +1 to N-1 do

for J=K+1 to N~1 do
tor I=J to N~-1 do

1
2
3
4. Lig = L”(LI—(lK
5
7
8 Lyg=1Lis—Lixl¥y

Consider the set of operations that involve a particular off-diagonal block L;;. The block
receives a number of block updates (Step %), where each update involves a pair of blocks from a
previous block-column. Once all such updates have been performed. the block is multiplied by the
inverse of the diagonal block L, (Step 4). The block then acts a source block for updates in Step &
updating subsequent blocks. Note that a block can appear as either the first or second source block
in Step 8. In the first position (I' = [and J' = R). block L; ;- updates blocks in block-rew I’ In

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 105

the second position (I’ = J and J" = N). L,y updates blocks mn block-column [’ This pattern
will be important later in this chapter.

A diagonal block Lk participates in a similar set of operations. It receives updates from all
previous block-columns in Step 8. Once all updates have been performed. Cholesky factorization
1s performed on that block (Step 2). The block (its inverse, actually) is then used to solve blocks
below it {Step 4).

Throughout this chapter, we will concentrate on the implementation of Step %, the block update
operation. This is by far the most important step in the computation.

Turning to a parallel implementation of this block-oriented computation. we note that each block
will naturally be mapped to some processor, map{L;;]. That processor will hold the non-zerces «f
the block in its local memory. Given a block mapping, a crucial question is where the block updates
in Step 8 will be computed. Since this step involves three different blocks, there are three obvious
processor candidates. One is to compute the update on the processor map{L,;]. Such a strategy
is typically referred to as a destination-computes approach for obvious reasons. The second is to
compute the update at map{L;x], a source-computes approach. The third candidate. computing
the update on map[L,k]. is also a source-computes approach.

We should note that other alternatives for distributing the computation exist. For example,
Ashcraft has described a family of fan-both methods (6] that are hybrids of the SC and DC ap-
proaches. In these methods, multiple processors compute updates from a given block, and multiple
processors compute updates fo a given block. Th2 main advantage of this class of methods 1s that
they reduce interprocessor communication volumes. However, they also significantly increase storage
requirements in an already memory-intensive computation. We therefore do not further consider
these methods.

Another alternative for distributing the computation is to use a dynamic mapping strategy, where
processors grab blocks when they are ready to perform computations with them. We will comment
on this alternative later iu this chapter.

Returning to the destination-computes and the two source-computes approaches to the com-
putation, let us consider how these approaches affect the structure of a parallel method. When a
block is mapped to a processor, that processor is then committed to performing the corresponding
set of update operations. Figure 29 shows the updates that must be performed for the three task
assignment strategies. If map[L x| computes all updates, then in the course of the computation.
map[L k] will need to receive all blocks L;x,J < K (all blocks above it in the same block-column).
and it will produce updates to blocks Ly to the right of L;x. Similarly, if map[L, k] computes the
updates, then it will need to receive all blocks L;x. K > J and will produce updates to blocks in a
later block-column. If map[L;,;] computes updates, it will need to receive pairs of blocks. Lx and
LJ K. from all earlier block-columns K.

We now consider the performance levels these approaches attain, the amounts of storage they

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION Hsts

|,LK computes J, K computes I, J computes
Figure 29: Blocks used for update operations.

require, and the communication volumes they generate. We actually restrict our attention to two
of the three approaches, the Ly, (destinalton-computes) approach and the L;x (source-compules)
approach. The other approach is sufficiently similar to the L;x approach that conclusions about
the latter should hold for the former as well.

6.3 Parallel Factorization Algorithms

6.3.1 Block Mapping

Before describing specific algorithms. we first describe the strategy we use for mapping blocks to
processors. The same mapping will be used for both the SC and DC methods. Our mapping s
done using a simple 2-D round-robin distribution. This commonly used approach looks at the set of
processors P as a 2-D /P by VP grid, where each processor has some label P, ;. This grid is then
used in a “cookie-cutter” fashion to map sections of blocks to processors. That is, a block L;s 1s
assigned to processor Py .4 /B smoqy/F- A four-processor example is shown in Figure 30. Besides
doing a reasonable job of distributing the factorization work among the processors, this mapping
strategy also possesses two properties that will be important for a parallel method. First, blocks
that are neighbors in the matrix are mapped to processors that are neighbors in the processor grid.
And second, a row cf blocks is mapped to a row of processors, and similarly a column of blocks 15

mapped to a column of processors. We will discuss the benefits that these properties bestow shortly
6.3.2 Destination-computes method

Structure of computation

Recall that the destination-computes apnroach performs block updates to a block by pairing blocks

from earlier block-columns. The parallel computation is structured so that once a block is campleted

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION i

...........

Figure 30: A 2-D round-robin distribution.

meaning that it has received all updates from previous blocks and has been multiplied by the inverse
of the diagonal block, then it is sent to all processors that own blocks affected by it. When a processor
p receives an off-diagonal block L;x from another processor, it determines whether it has already
received any blocks Lyx such that map[Lss) = p The set of blocks that fit this condition is easily
determined from the block mapping function. For each appropriate block Lk, the corresponding
update to Ly is performed. When a diagonal block Lk k arrives at a processor. all blocks nwned by
that processor in block-column K are checked to determine whether they have received all updates
and are ready to by multiplied by the inverse of the diagonal. 17 not, the diagonal block is queued.
Recall that a block L;; receives one update from each block-column to its left in the matnx.
To determine when a block has received all such updates, a count is kept of the number of updates
performed so far. When the count reaches J — 1, then the biock is multiplied by the inverse of the
diagonal block Ly (this is done immediately if the diagonal is available. or when the diagonal block
arrives otherwise). The block is then sent to all processors that own blocks modified by L;;. If the
block is a diagonal block, then it is factored and sent to all processors that own blocks below it.
An important question here is how to determine the set of processors that own blocks affected
by a particular block. Recall from an earlier discussion that a block L;x only affects blocks in row
I or column I. Recall also that the 2D round-robin mapping strategy maps a row/column of blocks
to a row/column of processors. Thus. the block can simply be multicast to row/ecolumn [mod VP
of the processor grid. This technique for limiting communication was originally proposed in [15] and

has been exploited in parallel implementations of several linear algebra computations.

THAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION Fop

Speedup

- - - Maximum toad

Caucal path
2§ —— Simulated spesdud
o | Jd i i
1 k" - 28 Fi]

Block size

Figure 31: Performance results for destination-computes method. n = 2048 P = 64

Simulated performance

Figure 31 shows simulated performance for the method described above, using 64 processors to
factor a 2048 x 2048 dense matrix. The figure compares simulated speedups with critical path and
maximum load upper bounds across a range of block sizes, as we have done in previous chapters
The results show that this destination-computes method is quite effective, yielding performance that
is nearly equal the maximum load upper bound for all but the largest block sizes. Furthermore. this
method can make excellent use of a memory hierarchy. The 2-D decomposition exposes suffictent
concutrency in the problem to allow a relatively large block size to be used. The block size of
32 which is used in the figure, for example, achieves excellent use of a processor cache withowm
exhausting available concurrency.

Comparing this approach to a panel method. we find the maximum parallel speedup achieved
with a panel method is roughly 31. This is significantly below the roughly 4x-fold speedup fir
the block approach. The differences between the two approaches are expected to be even more

pronounced with more processors.

Communication volume

Another important quantity in a parallel method is the volume of interprocessor communication
Total communication volume for a destination-computes method can be computed as follows Al
blocks, with the exception of the diagonal blocks, are sent to a row and a column of processors. or

2\/P total processors, in the course of the computation. Since every non-zero i the matnx belongs

CHAPTER 6 DENSE BLOCK ORIENTED FACTORIZATION AR

to somie block and there are n7/2 nosn-zeraes, total commusmmeation vodune 1s the product of 570
and 2P or n* VP words

To compare this communication volume with that generated by o panel or 1D decomg st
note that a dense panel approach would broadeast svery panel teevery processar govisig 1 F00 toral
communication volume. The bluck distnibution thus substantially redures conumuniration woilue

Another important thing to note about this destination-computes Llock-orented approack - that
s communtcation volurme s independent af the block wize The Llock size onn therefore be ohonen
with other issues in mund The block size we use 18 32 by 32 Such blocks are saflicentiy Laree
that they fully explowt the processor cache as per our performance model and thus v optinad
per-processor performance. While the load balanre would be soneeschint bettor with o finer v

any improvement would come at the cost of a reduction i per-processor performance

6.3.3 Source-computes method
Structure of computation

The other block factorization approach we consider is the Lygx-computes. or source-computes ap-
oroach. The structure of this parallel computation is quite straightforward When a block Lyp
1s completed, it is multicast to all processors map{L,x]. I > J {i.e.. all processors tha: own blocks
below Lk in column K). When a processor receives a rcomplete off-diagonal black L5 destined for
a block Ly that it owns, it checks whether Lk is complete as well. If so, the processor computes
an update to block L;; and sends it to map[L;s]. 1f not. the received block L,k is queued with
Lix. When a processor receives a complete diagonal block destined for some L. it checks to see
if Lyx has received all updates, and performs the inverse muitiplication if it has. If it has not. then
the diagonal block is queued with L;gk.

To determine when a block is ready, an update count is again kept with each block. When the
count for Ly reaches K — 1, the block is multiplied by the inverse of the corresponding diagenal
block (if the diagonal block is available). Once completed. the block can be used to compute updates
corresponding to queued blocks.

One small modification to the above approach allows it to interact more naturally with a grid of
processors. Rather than sending the update directly from map{L;x] to map[L;,}, which may lead
to messages between physically distant processors in the parallel machine. the update can instead
be sent from map(L; k) to map{L; k4], an immediate neighbor. The update can then be combined
with the update from L; x4, to Ly, with the combined update being sent off to L; 42. and so on.

Simulated performance

Figure 32 shows simulated performance for this source-computes implementation. again using 64

processors for a 2048 by 2048 dense factorization. Note that performance is quite erratic and is

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION Piu

Speedus
3

18 - = - Maximum ioad
- Cnncal path
sl —— Smuated speedup
1" 32 [} 128 254

Biock s:ze

Figure 32: Performance results for soutce-computes method. n = 2048. P = §4.

generally well below the maximum load upper bound. Let us briefly lock at the reasons for this
behavior. -

Consider the simple example in Figure 33. Assume that each block is assigned to a different pro-
cessor. The parallel computation begins with the factorization of Ly ;. This block 1s then multicast
to all blocks in column 0, and the corresponding owner processors perform inverse multiplications
Several ofi-diagonal blocks in column 0 complete roughly simultaneously, and they are then multi-
cast to all blocks below them. Messages corresponding to each of these blocks will arrive at block
L4, and these messages will cause the corresponding block update operations to be performed.
Since the blocks above L4 o complete at roughly the same ¢ime, and assuming there is some small
random component to their completion times, it is reasonable to assume that the blocks will arrive
in a random order, and thus the updates from L4 will be computed in a random order.

Now consider block Ly,1. Processor map[L, 1] cannot begin computing updates until L4 | receives
an update from L4 o. Ideally, this would be the first update computed by Lso. However. due to
the random arrival order this is quite unlikely. If updates are computed in a first-come. first-served
order, then the update to L4; would typically happen after several other updates. Note that these
other updates are much less important than the update to Ls1. An update to L4 . for example,
does not enable map[L4 2] to begin computing updates because L4, must also receive an update
from L4 ;. Note that while we have only looked at column 0, similar delays will occur in subsequent
columns as well.

The observed performance is therefore easily understood. It is below the upper bounds becaus»

processors spend significant amounts of time sitting idle, waiting for important updates that happen

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION BN

1.0

40] 41

Figure 33: A simple block example.

after less important updates. Performance is erratic because the amount of time a processor must
wait depends on the order in which blocks arrive at a processor, which is random and thus ran
change from run to run.

Note that the performance numbers shown here are by no means worst-case results for a source-
computes approach. Subtle differences in implementation can lead to huge swings in performance
For example, our initial source-computes implementation handled blocks that arrived at a pair block
before the pair was complete somewhat differently. Instead of holding them in a queue of waiting
blocks, we instead held them in a stack, which is somewhat easier to implement. The fact that the
matrix is triangular actually leads to a somewhat reasonable arrival order for later columns in the
matrix, but this reasonable order was reversed by the stack implementation. Performance was often
a factor of two or more lower than performance for the queue-based approach.

A poor task execution order is not the only problem with this source-computes approach to the
computation. Another problem is its per-processor storage requirements. A processor that owns a
block towards the bottom of a column would receive all blocks in that column nearly simultaneously.
Unfortunately, as we will show shortly, this approach requires large blocks to keep communication
volumes low. The column of large blocks that arrive at a processor would generaily require more
storage than the blocks actually assigned to that processor, thus severely limiting the size of problem
that could be solved.

Prioritized method

The obvious solution to the problem of updates not being computed in the right order 1s to prioritize
the computation of these updates. We use the following simple scheme. Each processor chooses as
its working block the leftmost block it owns that has not yet been used to produce updates. The

leftmost block is chosen because it will generally be the one that is first ready to produce updates

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 11

e
2 .
(<%
[}
58
L]
40
»
»
1 - -~ Load baiancs
- Cntcal path
2} —— Simuiated speeduo
° il] I]
“1e 32 “ 2.)
Block size

Figure 34: Performance results for prioritized source-computes method. n = 2048, P = 64.

The processor then produces all updates from this working block in order of increasing destination
column number. This order more closely matches the true urgencies of the updates. Only once all
updates from a block have been computed does the processor move on to another working block.
In order to reduce storage requirements, a processor explicitly requests blocks from other processors
when 1t is ready to use them.

As a simple example. constder block L4 from the earlier example. In a prioritized scheme.
processor map{L4 o] would begin the computation by requesting that map[L¢ o] send the diagonal
block. After modifying L4 by this block. the processor would request L, o from its owner processor
Once the corresponding update is computed, the processor would continue by requesting L and
so on. Software pipelining can be used to avoid having the processor sit idle while a block request
is serviced. That is, a processor can request block L4, x while computing the update that results
from block Ly k.

Figure 34 shows the simulated performance for this simple prioritization scheme (64 processors
2048 by 2048 matrix). The prioritization removes the erratic behavior of the first-come. first-
served approach, and it also yields performance that is nearly equal the load balance upper bound
Indeed, predicted performance for the prioritized source-computes method is roughly equal that of

the destination-computes approach for equal block sizes.

Communication volume

Communication volume for the source-computes approach is easily computed as follows. For every

block update from some block L. one block L,k is communicated from above and one update

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION K

to L7y is sent to the right, giving a total of 2B? communication. where B is the block size This
update operation performs 2 B® floating-point operations. Thus. B floating-point operations are per-
formed for every word of interprocessor communication. Since the entire computation performs nt/3
floating-point operations. the parallel computation therefore communicates n*/3B words between
processors.

Comparing this n®/B communication rate to the nV/P rate for the destination-computes ap-
proach, we find that in order for the two to produce the same volume of communication the block size
in the source-computes method must grow with the problem size. In particular. the two approaches
produce identical communication volumes when B = n/3V/P. In general, the corresponding block
size will be much larger than the block size that can be used with a destination-computes approach.
yielding significantly worse load balance. In the earlier example, where 64 processors were used to
factor a 2048 by 2048 matrix. the block size that yields equal communication is 85. The simulated
parallel speedup for the destination-computes method with a block size of 32 is roughly 49. while
the speedup for the source-computes approach with a block size of 85 is roughly 28.

As a brief aside, we note that the source-computes approach may have advantages over a
destination-computes approach in environments where the number of processors is either not known
a-priori or is subject to change during the computation {i.e., in a multiprogrammed environment). If
the source-computes computation were structured using an entirely dynamic schedule, where at run-
time processors grabbed the first available Lig block and produced the corresponding set of updates,
the resulting computation would generate a comparable volume of communication as the statically
scheduled version. The above communication results for the source-computes approach assume little
about block placement; the results are little changed when blocks are scattered randomly about the
machine. The destination-computes approach, on the other hand, makes several assumptions about

block placement and thus would not be nearly as amenable to dynamic scheduling.

6.3.4 Summary

Based on the results of this section, we conclude that both the destination-computes and source-
computes approaches to dense Cholesky factorization are viable approaches, although the source-
computes approach requires more attention to the details of scheduling and storage. Of the two. the
destination-computes approach is preferable because of its communication behavior. The remainder

of this chapter will concentrate on the destination-computes approach.

6.4 Predicting Performance

So far. we have only presented perforinance results for a single problem size and a single machine
size. To expand our results, Figure 35 shows simulated parallel processor utilization numbers across

a wider range of problem/machine sizes. This figure shows performance for a destination-computes

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 1

—
2
<
2
@
~
E
=]
<]
w
el
8
[
a e
3
k|
3
a
Yy -
L]l o
° { L i L i
200 4000 006 00 10008
Problem size

Figure 35: Performance versus problem size for destination-computes method

method using a block size of 32. As was the case with the examples shown earlier. performance has
been observed to be nearly equal the maximum load upper bound at all points.

In order to obtain a better feel for the way in which achieved performance relates to parameters
such as the block size, the machine size, and the problem size. we now derive an analytical expression
for maximum processor utilization. Since performance is constrained by load balance. the bound s
based on a calculation of maximum load assigned to any processor. We derive this expression for a
destination-computes strategy, although the identical bound holds for the source-computes methaod

The balance of computational load will naturally be determined by the set of blocks assigned .
a processor, and the amount of work required for each block. Recall tha: block receives ope update
for each block-column to its left. Since each individual block update operations performs the same
amount of work, the work associated with a block Ly is therefore proportional to J

The processor that receives the most work in a 2-D round-robin mapping is easily determined
Think of the dense matrix as an S by S matrix of super-blocks. where each super-block s one
cookie-cutter worth of blocks in the round-robin mapping. In the example of Figure 30. & 1s 1
The processor in the lower-right corner of the cookie-cutter {processor P3 in the example) aiways
receives the block within a super-block that requires the most work, and thus it receives the most
work overall.

Now consider the exact amount of work this processor receives. For the super-block n position
[.J, the lower-right processor owns a block that receives .Jv/P block updates. each of which re

quires 2B floating-point operations. Summing over the whole matrix. the number of Hoating-pomt

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 15

operations assigned to the lower-right prucessor s

s ! oo .
S+ 1IN+
Y S uveep = 4_1_‘_3_:_1__:__ g

I=1J1=1

- , =
The total amount of work in the entire computation is n%/3. and since n = SV P B ideally work er

processor would be:
~d PJ/’.’ g3
3P
Dividing the maximum foad on any processor by the ideal load per processor gives the following

upper bound on processor utilization:

SF

(S+ 1S+ 2)

We have empirically found this simple function to be a very accurate predictor of parallel perfor-
mance. [t also tells us a great deal about the general behavior of the parallel method. For example.
processor utilizations levels of 50% are reached quite quickly (5 = 4). However. higher levels require
much larger S values. A level of 75% requires S = 10 and a level of 90% requires & = 28. To put
these numbers in better perspective. note that a 1024 processor machine using a biock size of 32
would require an n = 10,000 problem to achieve 753% utilization. and an n = 28.000 problem to
achieve 90% utilization. In other words, a cookie-cutter block distribution 1s quite eflective at pro-
viding ‘reasonable’ processor utilization levels, but it requires quite large problems before utilizations

are pushed into the 80-100% range.

6.5 Model Verification

So far in this chapter we have looked only at simulated performance. We now lock at the accu-
racy of our model in compatison to real machine performance. Figure 36 compares actual parallel
speedups on the Stanford DASH machine (25 and 36 processors) with simulated speedups for rhe
same problems. The DASH speedups are somewhat below the predicted speedups. but they are

quite close.

6.6 Conclusions

This chapter has considered parallel dense (holesky factorization using a 2-D. or block-oriented
matrix decomposition. An important objective in looking at dense factorization has been to un-
derstand more general issues of how a block-ortented Cholesky factorization should be structured
We ronclude that of the two reasonable choices, destination-computes or source-computes. both are

viable options but a destination-computes strategy is preferable. Itis simpler to unplement provides

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION

a ¥y Q
3 ERRYY
3 X
@ P
Q Q
w o
3 3
= K] =
B 3w
a a
24
-
. i
*r gc;n;:{aled Simyiated
) DASH
p wh
l i L i 1 4 i ; ;
oo 1000 1800 000 2500 3000 "l om0 1600 2000 2808 008
Problem size Sropiem 5. 1%
Pa25 P =36

Figure 36: Simulated and actual speedups for destination-computes method. for 25 ansd 36 processors
Actual speedups are from the Stanford DASH machine.

more flexibility in the choice of the block size. and has fewer implementation pitfalls. Our goal o

the next chapter will therefore be to devise a sparse block method that uses a destination-computes

framework.

Chapter 7

Sparse Block-Oriented

Factorization

7.1 Introduction

Having investigated general issues for dense block-oriented Cholesky factorization, we now turn
specifically to sparse block methods. This chapter focuses on two practical and important questions
related to sparse block-oriented factorization. First, we consider the complexity of a parallel sparse
factorization program that manipulatessub-blocks. We show that a block approach need not be much
more complicated than a column approach. We describe a simple strategy for performing a block
decomposition and a simple parallel algorithm for performing the sparse Cholesky computation in
terms of these blocks. The approach retains the theoretical scalability advantages of block methuds
We term this block algorithm the block fan-out method. since it bears a great deal of similarity to
the parallel column fan-out method {21].

Another important issue in a block approach is the issue of efficiency. While parallel scalabihity
arguments can be used to show that a block approach would give better performance than a column
approach for extremely large parallel machines, these arguments have little to say about how well
a block approach performs on smaller machines. Our goal is to develop a method that is efficient
across a wide range of machine sizes. We explore the efficiency of the block approach in two parts
We first consider a sequential block {actorization code and compare its performance to that of a true
sequential program to determine how much efficiency is lost in moving to a block representation
The losses turn out be quite minor. We then consider parallel block factorization. looking at the
issues that potentially limit its performance. The paraliel block method 1s found to give extremely
high performance even on small parallel machines. For larger machines. performance 15 good but

not excellent primanly due to load imbalances. We quantify these load imbalances and investigate

117

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION Fix

the causes.

This chapter 1s organized as follows. Section 7.2 describes our strategy for decomposing a sparse
matnix into rectangular blocks. Section 7.3 describes a parallel method that performs the factor-
1ization in terms of these blocks. Section 7.4 then evaluates the parallel method. both in terms of
communication volume and achieved parallel performance. Section 7.5 gives a brief discussion of our
results, Section 7.6 discusses future work. Section 7 7 discusses related work. and finally conclusions

are presented in Section 7.8.

7.2 Block Formulation

Perhaps the most important question in a block-oriented sparse factorization is how to structure the
sparse Cholesky computation in terms of blocks. Consequently, our first step in describing a block-
oriented parallel method is to propose a strategy for decomposing the sparse matrix into blocks
Qur goal 1n this decomposition is to retain zs much of the efficiencv of a sequential factorization
computation as possible. Thus. we will keep a careful eye on the amount of computational overhead

that is introduced.

7.2.1 Block Decomposition

We begin our discussion by considering some of the general issues that are important for a block
approach. We also discuss how our approach addresses these issues. We believe the main 1ssues
that must be addressed are the following. First, blocks should be relatively dense. Since the blocks
will be distributed among several processors, there will certainly be some overheads associated with
manipulating and storing them. These overheads should be amortized over as many non-zeroes as
possible. The block decomposition must therefore be tailored to match the non-zero structure of
the sparse matrix. Another important issue is the way in which blocks in the matrix interact with
each other. If the interactions are complex. then the parallel computation can easily spend more
time figuring out how blocks interact than it would spend actually performing the block operations
Finally, the individual block operations should be efficient.

The primary motivation behind our decomposition approach is to keep the block computation
as simple and regular as possible. Our hope is that a regular computation will be an eflicient
romputation. We keep the computation simple by avoiding two distinct types of irregularity: (1)

irregular interactions between blocks; and (2) irregular structure within blocks.

Irregular Interactions

Since a sparse maltrix in general contains non-zeroes interspersed with zeroes throughout the matr:
it would appear desirable for a block decomposition to possess a large amount of flexibility in choosing

blocks. This flexibility could he used to locally tailor the block structure to match the actual

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION Liw

They produce
an update

biocks interact \ :

A\

The update affects
portions of other blocks

Figure 37: Example of irregular block interaction. Dotted lines indicate boundaries of affected areas.

structure of the sparse matrix. One seemingly reasonable decomposition approach. for example.
would locate clumps of contiguous non-zeroes in the matrix and group these clumps together into
blocks. This approach has serious problems, however, and we now discuss the advantage of giving
up some flexibility and instead imposing a significant amount of rigidity on the decomposition.

The primary problem with a flexible approach to block decomposition concerns the way in which
the resulting blocks would interact with each other. Recall that in sparse Cholesky factorization a
single non-zero L;; is multiplied with non-zeroes above it in the same column L, to produce updates
to non-zeroes L;; in row i and column j. When the matrix is divided into a set of rectangular blocks.
the blocks interact in a similar manner. Consider the simple example in Figure 37. This figure shows
a small set of dense blocks from a potentially much larger matrix. During the factorization, the block
in the lower left will interact with a portion of the block above it to produce the indicated update.
which must be subtracted from portions of the blocks to its right. Keep in mind that each of these
blocks is potentially assigned to a different processor. Thus, for each update operation the processor
performing that update must keep track of the set of blocks that are involved, the portions of these
blocks that are affected, the processors on which these blocks can be found. and it must dole out
the computed update to the relevant processors. Keeping track of all such block interactions would
be enormously complicated and expensive. With a large number of blocks scattered throughout the
matrix, the cost of this irregularity would quickly become prohibitive.

In order to remove this irregularity and greatly simplify the structure of the computation.

we decompose the matrix into blocks using global partitions of the rows and columns. In other

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION |#43)

Figure 38: Example of globally partitioned matrix.

words, the columns of the matrix (1...n) are divided into contiguous sets ({1 ...p2 =1}, {p2.. .ps -
1},...,{p~ ...n}), where N is the number of partitions and p; is the first column in partition i. An
identical partitioning is performed on the rows. A simple example is shown in Figure 38. A block
Ly (we refer to partitions using capital letters) is then the set of non-zeroes that fall simultanecusly
in rows {ps ...pr41—1} and columns {ps ... ps4+1—1}. The main advantage of this rigid distribution
comes from the fact that blocks share common boundaries. A block L;x now interacts with block
Lsk in the same block column partition to produce an update to block L;;.

One possible weakness of a global partitioning strategy is that its global nature may not allow

for locally good blocks. We will soon show that this is only a minor problem.

Irregular Block Structure

Another issue that can have a significant impact on the efficiency of the overall computation is the
internal non-zero structure of a block. Just as we restricted the choice of block boundaries earlier to
increase regularity across block operations, we now consider restrictions on the internal structures
of blocks to increase regularity within a block operation.

Note first that allowing arbitrary partitionings of the rows and columns of the matrix would
lead to blocks with arbitrary internal non-zero structures. Recall that a block update operation is
performed by muitiplying a block by the transpose of a block above it (as a matrix-matrix multipli-
cation). With arbitrary non-zero structure within the blocks, the corresponding computation would
be a sparse matrix multiplication, which is an inefficient operation in general.

In order to simplify the internal structure of the blocks and keep the computation as efficient

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 121

as possible, we take advantage of the supernodal structure of the sparse matrix. Specifically, we
choose partitions so that all member columns belong to the same supernode. Since the coluinns in a
supernode all have the same non-zero structures. all resulting blocks will share this property. Thus.
a block L;, will consist of some set of dense rows. A block may not be completely dense. since net
all rows are necessarily present. A single structure vector keeps track of the set of rows present in a
block. This sparsity within a block has little effect on the efficiency of the computation. as we shall
soon show.

Before proceeding, we note that Ashcraft [4] proposed a similar decomposition strategy indepen-

dently.

7.2.2 Structure of the Block Factorization Computation

Our goal in placing the above restrictions on blocks in the sparse matrix is to retain as much efficiency
as possible in the block factorization computation. We now describe a sequential algorithm for
performing the factorization in terms of these blocks and evaluate that algorithm’s efficieacy. The
parallelization of the sequential approach that we derive here will be described later.

At one level, the factorization algorithm expressed in terms of blocks is quite obvious. The follow-
ing pseudo-code, a simple analogue of dense block Cholesky factorization. performs the factorization.

Note that I, J, and K iterate over the partitions in the sparse matrix.

tor K =0 to N -1 do
Ly «— Factor(Lyg)
for I=K+1 to N~1 with Ligx #0 do

for J=A+1 to N—1 with L;g #0 do
tor [=J to N —1 with L;g #0 do

1
2
3
4. Lix — Lik Lk
5
6
7 Lyy— Lyy— Lix LTk

The first thing to note about the above pseudo-code is that it works with a colurmn of blocks
at a time. Steps 2 through 4 divide block column K by the Cholesky factor of the diagonal block
Steps 5 through 7 compute block updates from all pairs of blocks in column K. We therefore store
the blocks so that all blocks in a column can be easily located. This is accomplished by storing one
column of blocks after another, just as sparse column representations would store one column of
non-zeroes after another. One potential problem here is that step T updates some destination block
L1, whose location cannot easily be determined from the locations of the source blocks. To make
this step efficient. a hash table of all blocks is kept.

Now consider the implementation of the individual operations in the pseudo-code. The block

factorization in step 2 is quite straightforward to implement. Diagonal blocks are guaranteed to

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION N

be dense, so this step is simply a dense Cholesky factorization The multipheation by the wnverse
of the diagonal block in step 4 1s also quite straightforward. This step daoes not actually commpure
the inverse of Ly k. Instead. it solves a series of triangular systerus Whide the bloek Ly - e
necessarily dense, the computation can be performed without consulting the pon-zero structurs
the block.

The remaining step in the above pseudo-code. step 7.1s both the most important and the o
difficult to implement. It is the most important because 1t sits within a doubly-nested loop and thus
performs the vast majority of the actual computation. It 15 the most difficult because 11 works with
blocks with potentially different non-zero structures and must somehow reconale these structures
More precisely, recali that a single block in L consists of some set of dense rows {rom among the rows
that the block spans (see the example in Figure 38). When an update s performed i step 7 above
the structure of Ljx determines the set of rows in Ly that are affected. Sumilarly, the structure of
Lsx determines the set of columns in L;; that are affected.

The block update computation is most conveniently viewed as a two-stage process. A set of
updates is computed in the firsi stage. and these updates are subtracted from the appropriate
entries in the destination block in the second. or scatter stage. The Hrst stage, the computation of
the update, can be performed as a dense matrix-matrix multiplication. The non-zero structures of
the source blocks Ljx and L,k are ignored temporarily; the two blocks are simply multiphed 1o
produce an update.

During the second stage. the resulting update must be subtracted from the destination The
most simple case occurs when the update has the same non-zerc structure as the destination block
We have coded our dense matrix-matrix multiplication routine as a muliiply-subtract (1» (7 =
(" — ABT), rather than a multiply-add, so the destination block can be used as the destination
directly, without the need for a second scatter stage.

Consider the more difficult case where the non-zerc structures differ. The first step in this case
is to compute a set of relative indices {42]. These indices indicate the corresponding position it the
destination for each row in the source. Two sets of relatives indices are necessary in order to scatter
a single block update; rel;, the affected set of rows and rel, . the affected set of columns.

The computation of relative indices is quite expensive 1n general, since 1t requires asearch through
the destination to find the row corresponding to a given source row. Fortunately, such a search 1s iy
rarely necessary due to an important special case. When the destination block has dense structure
the relative indices bear a trivial relationship to the source indices. Note that the rel, indices alway
fall into this category, since the destination block always has dense column structur- We will b
more precise about exactly how often relative index computations are necessary shortly

Once relative indices have been computed, the actual scatter is performed as follows

1. for i =10 to length;x — 1t do
2. for j =10 vo lengthyx ~ | do

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION i

3. l,;_,irr’l,[i“{rﬂ'){)}'é

J e l,}jirf'l,{l';}[r?’ljgj}’:; - u}v’ddtrij{)}

Scattering s also somewhat expensive, and 1t s much more prevalent than relative index com
putation. The frequeacy with which relative index computations and scatters must be performed
will be considered shortly

In summary. the efficiency of a block update operation depends heavily on the aon-zers structures

of the involved blocks.

o The best case occurs when the update has the same structure as the destination Iu this case

the ("= (" = AB7 operation can use the destination block as its destination

¢ The next best case occurs when the destination block 1s dense The update must be scattered

but the relative indices can be computed inexpensively

o The worst case occurs when the update has different structure from the destination and the
destination block ts sparse. The update must be scattered. and relative indices are refativels

expensive to compute.

7.2.3 Performance of Block Factorization

We now look at the performance obtained with a sequential program that uses a block decomposition
and block implementation. Since our end goal is to create an efficient parallel approach. performance
1s studied for the case where the matrix is divided into relatively small blocks. The blocks should
not be too small. however, because of the overheads that will be associated with block operations
We consider 16 by 16, 24 by 24 and 32 by 32 block sizes. To produce blocks of the desired size B
we form partitions that contain as close to B rows/columns as possible. Since partitions are subsets
of supernodes, some partitions will naturally be smaller than B.

The performance obtained with the sequential block approach on a single processor of the Stan-
ford DASH machine is shown Figure 39. This performance is expressed as a fraction of the per.
formance obtained with an efficient sequential code {a supernode-supernode left-looking method)
From the figure, it is clear that the block approach is relatively efficient. Efficiencies for four of the
seven matrices are roughly 63% for a block size of 16 and roughly 75% for a block size of 32, W
will discuss the reasons why the other three matrices. GRID100. GRID200. and BUSSTRIR. achieve
significantly lower performance shortly.

Our earhier discussion indicated that the performance of the block method might suffer because of
the need for relative index calculations and update scattering. In order to gauge the effect of these
two issues on overall performance. Table 29 relates the amounts of scattering and relative wdex
comyutation {for B = 16} to the number of floating-point operations performed in the factornization

The numbers are quite similar for the other block size chaices. The first column compares the

CHAPTER 7 SPARSE BLOCR-ORIENTED FACTORIZATION 124

GRID100

GRID200

8CssSTKiIs
BCSSTK16
BCSSTKY?
BCSSTK18
BCSSTK29

G OE X+ O (ID

Fracton of sequental performance {%)

.
-

% F =
Block size

Figure 39: Performance of a sequential block approach. relative to a sequential left-looking
supernode-supernode approach. on a single processor of the Stanford DASH m: “1ne.

Table 29: Frequency of relative index computations and scatters for block method, compared with
floating-point operations (B = 16).

Relative indices Scatters
Problem {relative to FP ops) | (relative to FP ops)
GRID100 0.37% 4.0%
GRID200 0.18% 2.4%
BCSSTK15 (.04% 1.6%
BCSSTKI6 0.02% 1.4%
BCSSTK17 0.04% 1.8%
BCSSTK18 0.11% 2.6%
BCSSTK29 0.01% 1.0%

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 125

Table 30: Frequency of relative index computations and scatters for block method, compared with
sequential multifrontal method (B = 16).

Relative indices Scatters
Problem {relative to seq MF) | (relative to seq MF)
GRID1060 8% 2%
GRID200 30% 69%
BCSSTK15 109% 105%
BCSSTK16 50% B89
BCSSTKLY 61% 90%
BCSSTK138 163% 91%
BCSSTK29 32% 0% |

number of distinct relative indices computed against the number of floating-point operations. The
second column compares distinct element scatters against floating-point operations. The table shows
that even if relative index computations and scatters are much more expensive than floating-point
operations. the related costs will be small. Clearly, the vast majority of block update operations
produce an update with the same structure as the destination block.

It is also interesting to compare relative indices and scatters to those performed by a true sequen-
tial method. Table 30 gives the relevant numbers. In this case, the comparison is with a sequentjal
multifrontal method, where notions of relative indices and scatters are easily quantified. The com-
parison is relevant for the left-looking supernode-supernode as well, since the two methods perform
similar computations. Note that the block method performs a comparable number of relative index
computations and scatters.

Ashcraft [4] has described methods for improving block structure and thus decreasing the need
for scattering. It is our belief that a very simple block decomposition is more than adequate for

keeping such costs in check.

7.2.4 Improving Performance

It is clear from the previous section that the block method is generally quite efficient. Recall, however.
that the method was much less efficient than a true sequential method for several problems. Data
on relative index and scatter frequency showed that these were not the source of the losses. The
losses are actually due to overheads in the block operations.

Consider a single block update operation. It must find the appropriate destination block through
a hash table, determine whether the source and destination blocks have the same structure. and then
pay the loop startup costs for the dense matrix muitiplication to compute the update. While these
costs are trivial when all involved matrices are 32 by 32, in fact many blocks in the sparse matnx
are quite small. In the case of matrix GRID100, for example. the average block operation performs

only 96 floating-point operations when B = 32, as compared to the 65536 operations that would be

CHAPTER 7 SPARSE BLOCK-ORIENTED FACTORIZATION UK

]
1

Mean F P ops per block op

\

GRID100

GRID2060

BCSSTK15

BCSSTK16

BCSSTK17

BCSSTK18

BCSSTX29 ,

" »n EY)
Block size

N
g

e
R
x X + O[]

9]
-

Figure 40: Average floating-point operations per block operation.

performed if all blocks were 32 by 32 full blocks. The average number of floating-point operations
per block operation across the whole benchmark set is shown in Figure 40. Note that this figure
quite accurately predicts the performance numbers seen in the previous figure.

The primary cause of small blocks in the block decomposition is the presence of small superncdes.
and thus small partitions. To increase the size of these partitions. we now consider the use of
supernode amalgam :tion [10, 17] techniques. Recall that the basic goal of supernode amalgamation 1
to find pairs of supernodes that are nearly identical in non-zero structure. By relaxing the restriction
that the sparse matrix only store non-zeroes, some zeroes can be introduced into the sparse matrnix
in order to make the sparsity structures of two supernodes the same. These supernodes can then be
merged into one larger supernode. We use the same amalgamation approach for the block approach
as we did for the panel approach in a previous chapter.

In Figure 41 we show the average block operation sizes both before and after amalgamation [t
ts clear that amalgamation significantly increases the block operation grain size.

Before presenting performance comparisons, we first note that amalgamation does have a cost
By introducing zeroes into the sparse matrix. the amount of floating-point work 1s increased To be
fair. the performance of the block computation after amalgamation should therefore be compared
with the performance of the sequential computation before this extra work is introducea. However
amalgamation also provides some benefit for sequential factorization. primarily related to improved
use of the processor cache. We found that the benefit in fact outweighed the cost for the amalgama-
tion strategy we employed on all benchmark matrices, with performance improvements ranging {rom

1% to 14% (see Table 31) for the true sequential method. Block method perforinance 1s therefore

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 127

!

\\

Mean FP ops per biock op
Mean FP ops per block op

£
1
§

100 A . wol- 2 GRID100
& GRID100 - = 3 GRID200
I GRID200 © BCSSTK1S
© BCSSTKt5 + BCSSTK16
+ BCSSTK16 x BCSSTK17
x BCSSTK17 » BCSSTK18
1" % BCSSTK18 10§ 0 BCSSTK29
O BCSSTK29 1
] 1 ,
" P = 1 2 FY)
Block size Biock size
Before amaigamation Aher amaigamation

Figure 41: Average floating-point operations per block operation, before and after supernode amal-
gamation.

compared to the performance of the true sequential method after amalgamation.

Figure 42 shows relative performance levels after amalgamation. The results indicate that amal-
gamation is quite effective at reducing overheads. Performance roughly doubles for GRID 100, where
the average task grain size increases for B = 32 increases from 96 floating-point operations to 597
Performance increases for the other matrices as well. With only twa exceptions. block method per-
formance is roughly 80% of that of a true sequential method for B = 32. Performance falls off
somewhat when B = 24, and it decreases further when B = 186, but the resulting efficiencies are still
more than 70%.

Note that our chosen range of blocks sizes. 16 to 32, is meant to span the range of reasonable

Table 31: Supernode amalgamation results,

| Supernodes Performance improvement

l Name before amalgamation | after amalgamation for true seq. method
1. | GRID100 6,672 2.786 5%
2. | GRID200 26,669 11.243 6%
3. | BCSSTK15 1,295 525 1%
4. | BCSSTKI16 691 434 Y7
5. | BCSSTK17 2.595 1,622 2%
6. | BCSSTKI8 7.438 3727 TR
7. | BCSSTK29 3.231 1.193 VA

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTQRIZATION

L

GRID10C

GRiD200

BCSSTK1S
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK29

&
1
oKX+ 00D

8
T

GRID100

GRID200

BCSSTK1S
BCSSTK18
BCSSTK17
BCSSTK18
BCSSTK29

Fraction of sequential petformance (%)
Fraction o! sequental performance {%)

3
3
T
O XX+ OoUD

L] L) . o
1. n n AL » n

Block s128 Biock size

Before amaigamation After amaigamation

Figure 42: Performance of a sequential block approach. before and after supernode amalgamation.
relative to a sequential left-looking supernode-supernode approach.

choices. Blocks that are siialler than 16 by 16 would be expected to lead to large overheads. Indeed.
performance was observed to fall off quite quickly for block sizes of less than 16. At the other end of
the spectrum, the marginal benefit of increasing the block size beyond 32 by 32 would be expected

to be small. This expectation was also confirmed by empirical results.

7.2.5 Block Decomposition Summary

This section has described a simple means of decomposing a sparse matrix into a set of rectangular
blocks. The performance of a method based on such blocks on a sequential machine is nearly equal
to that of a true sequential method. Of course, our goal here is not an efficient sequential method.
but instead an efficient paralle] method. The next section will consider several issues related to the

parallelization of the above approach.

7.3 Parallel Block Method

The question of how to parallelize the sequential block approach described so far can be divided into
two different questions. First, how will processors cooperate to perform the work assigned to them”

And second, what method will be used to assign this wark to processars? This section will address

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION F2u

these two questions in turn.

7.3 1 Parallel Factorization Organization

We begin our description of the parallel computation by assurming that each block will have some
specific owner processor. In our approach. the owner of a block L;x performs all block update
operations with L;x as their destination. That is. we use a destination-computes approach. an
approach that was shown to have significant advantages over a source-computes approach in the
previous chapter. With this choice in mind. we present the parallel block fan-out algorithu in
Figure 43. The rest of this discussion will be devoted to an explanation of the algorithm.

The most important notion for the block fan-out method is that once a block Ljx i1s compiete
meaning that it has received all block updates and has been multiplied by the inverse of the diagonal
block. then L;gk is sent to all processors that could own blocks updated by it. Blocks that could
be updated by Lrkx fall in block-row [or block-column [of L. When a block L;x is received
by a processor p (step 2 in Figure 43), processor p performs all related updates to blocks it owns
The block Lk only produces blocks updates when it is paired with blocks in the same column
K. Thus, processor p considers all pairings of the received block L;x with completed blocks it
has already received in column A (these blocks are held in set Reck) to determine whether the
corresponding destination block is owned by p (steps 10 and 11). If the destination L, is owned by
p {map[L;;] = p). then the corresponding update operation is performed (steps 12 and 13). Each
processor maintains a hash table of all blocks assigned to it. and the destination block 1s le-ated
through this hash table.

A count is kept with each block (nmod[L/x]). indicating the number of block updates that stll
must be done to that block. When the count reaches zero, then block Lk 1s ready to be muitiphied
by the inverse of Lx x (step 20 if Li x has already arrived at p: step 6 otherwise). A diagonal block
Lk k is kept in Diagk p, and any blocks waiting to be modified by the diagonal block are kept in
Waitk ,. The sets Diag, Wait, and Rec can be kept as simple linked lists of blocks.

One issue that is not addressed in the above pseudo-code is that of block disposal. As described
above, the parallel algorithm would retain a received block for the duration of the factorization Ta
determine when a block can be thrown out, we keep a count ToRecg , of the number of blocks n
a column K that will be received be a processor p. Once |Reck | = ToRecg ,. then all blocks 1n
column K are discarded.

We note that a small simplification has been made in steps 11 through 14 above. For all blocks
Lrs. I must be greater than J, a condition that is not necessarily true in the pseudo-code. The
reader should assume that [is actually the larger of [and J, and similarly that J 1s the smaller of

the two.

CHAPTER 7. SPARSE BLOCRK-ORIENTED FACTORIZATION S TL

N D ;W

o

10.
11,
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.

22.
23.

while some L;; with map{L,;] = MylD is not complete do
receive some [g
if [= A /» diagonal block ¢/
Diagg aryip — Lik
toreach L;x € Waitg yy1p do
Lik — Lix Lz
send L,x to all P that could own blocks in
rov J or column J
else
Reck myrp — Reck myrp U{Lx}
foreach L i € RecK,Mle do
it map[L;s} = MylD then
Find L,
Lyj—Lis-LixlYy
nmod{Lys) — nmod[L;;] - |
it (andIL”] = 0) then
it I = J then /+ diagonal block */
Ly; — Factor{L,y;)
send L); to all P that could own blocks in
column J
else it (Diag; syrp # 0) then
Lij—LisL5)
send L;; to all P that could own blocks in
row [or column /
alse

w'aitJ,Mle — H'ﬂit_[_My”) U {LIJ}

Figure 43: Parallel block fan-out algorithm.

CHAPTER 7 SPARSE BLOCK-ORIENTED FACTORIZATION 131

7.3.2 Block Mapping for Reduced Communication

We now constder the issue of mapping blocks to processors. Our general approach s identical to the
approach we used for dense matrices. We assume that the processors are arranged in a p x p 2-D)
grid configuration, with the bottom left processor labeled P, 4. and the upper right processor labelsd
Po_1 p-1. To himit communication. a row of blocks 1s mapped to a row of processors Simularly. a
column of blocks is mapped to a column of processors We choose round-robin distributions for both
the rows and columns, where

map[Lis] = Prmodp Jmadp-

Other distributions could be used. By performing the block mapping in this way. a block L;n 1u
the sparse factorization need only be sent to the row of processors that could own blocks 1n row /
and the column of processors that could own blocks in column /. Every block in the matrix would
thus be sent to a total of 2p = 2v/P processors. Note that communication volume is independent of
the block size with this mapping; every block in the matrix is simply sent to 2v/P processors.
Recall from the previous chapter that this block mapping strategy i1s appealing not only because
it reduces communication volume. but also because it produces an extremely simple and regular
communication pattern. All communication is done through multicasts along rows and columns of
processors. This pattern is simple enough that one might reasonably expect parallel machines with
2-D grid interconnection networks to provide hardware muiticast support for it eventually. In the
absence of hardware support. an efficient software multicast scheme can be used. We will return to

this i1ssue later in this chapter.

7.3.3 Enhancement: Domains

Before presenting performance results for the block fan-out approach. we first note that the method
as described above produces more interprocessor communication than competing panel-based ap-
proaches for small parallel machines. This is despite the fact that the block approach has much
better asymptotic communication behavior. To understand the reason, consider a simple 2-D &k x &
grid problem. The corresponding factor matrix contains O(k?log k) non-zeroes. and the paraliel
factorization of this matrix using a panel approach can be shown to generate O{k*P) communica-
tion volume [24]. In the block approach, every non-zero in the matrix is sent O(V'P) processors, so
the total communication volume grows as O{(k* !ogk)ﬁ). While the communication in the block
approach grows less quickly in P, for any given 'k’ it also has a larger ‘constant’ in front.

Recall that an important technique for reducing communication in panel methods was the use
of owned domains [4, 9]. Domains are large sets of columns in the sparse matrix {corresponding to
subtrees of the elimination tree of L) that are assigned en masse to a single processor By assigning
the columns of an entire subtree to a single processor. these columns can be factared without

any interprocessor communication. and the updates from all columns in a domain to subsequent

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION i

[284

columns can also be computed without communication. Ashcraft suggested [4] that domains can be
incorporated into a block approach as well. The basic approach is as follows. The non-zeroes within
a domain are stored as they would be in a column-oriented method. The domain factonzation 1~
then performed using a column method. The aggregate domain updates to ancestor columns are
computed column-wise as well. We use an efficient left-looking supernode-supernode method for
both. Once the aggregate updates have been computed, they are sent out in a block-wise fashion to
the appropriate destination blocks.

Note that one benefit of these domains is that they reduce the number of small blocks i the
matrix. and thus they reduce related overheads. Recall that small supernodes are the man source
of small blocks. In a sparse problem, most small supernodes lie towards the leafs of the elimination
tree, where they are likely to be contained within domains.

One problem with the above approach to owned domains is that it introduces a ‘seam’ in the
biock-oriented computation. The matrix is stored as columns within domains and as blocks outside
the domains. This seam can be avoided if the domain non-zeroes are still kept as blocks. Aggregation
of updates to ancestor blocks can be accomplished by creating ‘shadow blocks for all affected ancestor
blocks. The shadow blocks would have the same non-zero structures as the blocks they represent.
but they would be initialized to have all zero entries. The domain factorization would then be
handled in a block-oriented manner. Once a domain is complete, a shadow block wrild contamn
the aggregate update from the domain to the corresponding destination block. The shadow blocks
could then be sent to the processors that own the corresponding real blocks, to be added as updates.
This approach produces a much cleaner although slightly less efficient factorization code. We wiil
prefer efficiency to elegance in this chapter, however. Performance results will come from a code
that stores owned domains as columns.

Of course, the owned domains must be carefully assigned to processors to avoid having some
pracessors sit idle, waiting for other processors to complete local domain computations. Geist and
Ng {20] described an algorithm for assigning a small set of domains to each processor so that the
amount of domain work assigned to each processor is evenly balanced. They considered domains in
the context of column-oriented parallel methods. but their approach also applies for a block-oriented
approach. All results from this point on use the algorithm of Geist and Ng to produce domains.

With the introduction of domains. the parallel computation thus becomes a three phase process
In the first phase, the processors factor their owned domains and compute the updates from these
domains to blocks outside the domains. In the second phase. the updates are sent to the processors
that own the corresponding destination blocks and are added into their destinations. Finally. the
third phase performs the block factorization, where blocks are exchanged between processors Noe
that these are only logical phases; no global synchronizations is necessary between the phases

Consider the effect of domains on communication volume in a block method for a 2-D grid prot.-

fern. We first note that the number of non-zeroes not belonging to domains in the sparse matrix can

i
1
i
i
1
H
i

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 183

be shown to grow as O(k?log P). versus O(k” log k) without domains. Total communication volure
for these non-zeroes using a block approach is thus O(kg\/ﬁlog P). The other component of com-
munication volume when using domains is the cost of sending domain updates to their destinations
The total size of all such updates can be shown to be O(k?). independent of P, so domain update
communication represents a lower-order term. Total communication for a 2-D grid problem is thus
O(k*V/Plog P).

We should note that this communication figure is not optimal for block-oriented factonzation. In
fact. communication volumes car be reduced to O(k*VP) through the use of a fan-both approach
[6]. However. it is not at all clear that these improved communication figures can be obtained in a

simple, practical method.

7.4 Evaluation

This section evaluates the parallel block fan-out approach proposed in the previous section. The
approach is evaluated in three different contexts. First. we look at performance on a small-scale mul-
tiprocessor. Then, we consider performance on moderately-parallel machines {up to 64 processors).
using our multiprocessor simulation model and the Stanford DASH machine. Finally, we consider

issues for more massively parallel machines.

7.4.1 Small Parallel Machines

The first performance numbers we present come from the Silicon Graphics SGI 4D/380 multipro-
cesscr. Parallel speedups are shown in Figure 44 for | through 8 processors. All speedups are
computed relative to a left-looking supernode-supernode sequential code, the sequential code that
gave the best overall performance. The figure shows that the block fan-out method is indeed quite
efficient for small machines. In fact. we have found that performance is higher than that of a panel
method on this machine, due to better load balance. Recall that the static task mapping scheme
that i1s used in a panel method causes some load imbalances. The block method assigns sufficiently
many blocks to each processor so that imbalances are small. We also note that the performance of
the block method is comparable to that of a highly efficient shared-memory panel code [40. 41] that
dynamically doles out tasks to processors and thus does not have load imbalance problems.
Speedups for the block method on 8 processors are roughly 5.5-fold, corresponding to absolute
performance levels of between 45 and 50 double-precision MFLOPS. Speedups are less than linear in
the number of processors for two simple reasons. First, the block method is slightly less efficient than
a column method. We believe this accounts for a roughly 20% performance reduction. Second. the
block methaod still produces some load imbalance. Program instrumentation reveals that processors
spend roughly 15% of the computation on average sitting idle. These two factors combine to give a

relatively accurate performance prediction.

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION [BE

GRID100

GRID200

BCSSTK15
8CSSTKi8
BCSSTK17
BCSSTK18
BCSSTK29

Parallel speedup

x X + OilD

<

o H J . L
s L}

Processors

Figure 44: Parallel speedups for block fan-out method on SGI 4D-280. B = 24

7.4.2 Moderately Parallel Machines

We now evaluate the parallel performance of the block fan-out approach on machines with up to 64
processors, using both the multiprocessor simulation model described earlier and also the Stanford

DASH machine. We also discuss issues of communication volume.

Simulated Performance

To get a feel for how a block approach performs on larger parallel machines, Figure 45 shows
simulated processor utilization levels for between 4 and 64 simulated processors, using a block size
of 24. It is clear from the figure that the block approach exhibits less than ideal behavior as the
machine size is increased. On 64 processors. for example, utilization levels drop to roughly 407
Further investigation reveals that the primary cause of the drop in performance is a progressive
decline in the quality of the load balance. Figure 46 compares simulated performance for matrices
BCSSTK15 and BCSSTK29 with the best performance that could be obtained with the same block
distribution. The load balance performance bound is identical to the maximum load bound that we
used for panel methods; it is obtained by computing the runtime that would be required if there
were no dependencies between blocks and if interprocessor communication were free. The difference
here is that the other component of the maximum load bound, load efficiency. is unimportant since
the vast majority of the computation makes good use of the cache and thus obtains near-perfect
efficiency.

The quality of the load distribution clearly depends on the method used to map blocks 1o

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 1

-t

GRID100

GRiD200

BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK29

Parallel processor utiization (%)

O %X X+ O00P

° d. l de !

Processors

Figure 45: Simulated parallel efficiencies for block fan-out method. B = 24.

g
1

8
i

5 5
g
3 ® 3
o -3
8 8
a3 s &
2 5
g — Simulated performance g ———— Simulated periormance
e Load balance L Load balance
wt wi
w4 20}
° i l { l . ! l i !
4 [1 32 [Ya [) 32 M
Processors Procassors
Br.SSTK1S B8CSSTK29

Figure 46: Simulated parallel performance, compared with load balance upper bound (B = 24).

CHAPTER 7 SPARSE BLOCK-ORIENTED FACTORIZATION

—_— - 109
g ‘
5
= = soy
= =
3 3
wr "
wy W
@ T
8 $
[+ 8 [=3N -} od
3 kS
< o BCSSTK1S z BCSSTK29
a A DENSES800 a SENSE1060

“we 401

0t 204

0 | L ; I ° ; ;

4 a 16 32 o4 4 L] e sz -
Procassors Processors
BCSSTK15 BCSSTKZ29

Figure 47: Parallel utilization upper bounds due to load balance for BCSSTK15 and BCSSTH 29,
compared with load balance upper bounds for dense problems (B = 24). In both plots. sparse and
dense problems perform the same number of floating-point operations.

processors. Recall that we use a very rigid mappingstrategy. where block Ly, is assigned to processor
Prmodp Jmodp- One possible explanation for the poor behavior of this strategy is that it does naot
adapt to the structure of the sparse matrix; it tries to impose a very regular structure on a matrix
that is potentially comprised of a very irregular arrangement of non-zero blocks.

While the mismatch between the regular mapping and the irregular matrix structure certainly
contributes to the poor load balance, it is our belief that a more important factor is the wide
variability in task sizes. In particular, since a block is modified by some set of blocks to its {eft.
blocks to the far right in the matrix generally require much more work than blocks to the teft
{more accurately, blocks near the top of the elimination tree require more work than tlocks near the
leafs). Furthermore, since the matrix is lower-triangular. the number of blocks in a column decreases
towards the right. The result is a small number of very important blocks in the bottom-right corner
of the matrix.

To support our contention that the sparse structure of the matrnx is less important than the
more generei task distribution problem, Figure 47 compares the quality of the load balance obtained
for two sparse matrices, BCSSTK15 and BCSSTK?29, to the load balance obtained using the <ame
mapping stratezy for a dense: matrix. The curves show the maximum obtainable processor utihzation
levels given the block mapping. The dense problems are chosen so as to perform roughly the same
number of floating-point operations as the two sparse problems

Note that the load valanee can be improved by moving to a smaller block size. thus ereating

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 13T

more distributable blocks and making the block distribution problem easter However as siscussed
earlier. smaller blocks also increase block overheads For the larger benchiark sparse atrices
decreasing the block size from B = 24 to B = 16 increases simulated parallel efficeeneres by raughly
13% for P = 64. A block size of less than 16 further improves the load balance but achieves fower
performance due to overhead issues

The general conclusion to be drawn from these sunulation results 1s sunply that 10 dithieudt o
achieve high processor utilization levels on large machines using relatively smali problems Possibile
avenues to explore in order to improve performance include the use of a more dynamic task assign-
ment strategy or a more general function for mapping blocks to processors Tlis matter will requure

further investigation.

Communication Volume

So far. our analysis has assumed that parallel performance is governed by two costs the costs of exe
cuting block operations on individual processors and the latencies of communicating blocks between
processors. Another important, although less easily modelled component of parallel performance s
the total interprocessor communication volume. Communication volume will determune the amount
of contention that 1s seen on the interconnection network. Such contention can have severe perfer-
mance consequences, and can in many cases govern the performance of the entire computation {sev
[43], for example).

Ratuer than try to integrate these costs into our simple performance model. we instead {ook
at interprocessor communication in a more qualitative way. To obtain a general 1dea of how much
communication is performed. Figure 48 compares total interprocessor communication volume with
total floating-point operation counts for a variety of sparse matrices and machine sizes This figure
shows the average number of floating-point values sent by a processor divided by the number of
floauug-point operations performed by that processor. Sustainable values will of course depend «n
the relative computation and communication bandwidths of the processor and the processor inter-
connect in the parallel machine. Current machines would most likely not have trouble supporting
the 0.025 ratio (40 FP ops per word of communication) seen for 16 pracessors on these matrices
The 0.05 ratio (20 FP ops per work of communication} on 64 processors would be more difficulr 1o

support.

Real Machine Performance

Let use now consider how these simulation numbers translate into achieved performance an the
Stanford DASH machine. We first compare predicted speedups with achieved speedups for matrices
BCSSTKI15 and BCSSTK29 in Figure 49 The block size for both is 24 The figure shows that DASH
verformance s significantly below simulated performance. The main reasen is that communicating

costs are assumed to be hidden frorn the processors in the simulation. while they are not Indiden

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION L

GRID10O

GRID200

BCSSTK1S
BCSSYK16
BCSSTK?
BCSSTK18
BCSSTK29

.10 -~

O % X + Ol

0.08

Communicaton 10 camputalion rauo (words per FP opj

Processors

Figure 48: Communication versus computation for the block fan-out method

(=% =3
2 3
2 ui F 2 ui /
w d
% % —— Simulated speedup
8 »f — Simuiated speedup E n + DASH speedup
- DASH speedup
] > 4
0 O
) L | °] 1 } J i j ! ; : i
32 k| 49 [4 1) 12 1 20 24 -] 2 k2 48
Block size Bicck size
BCSSTK1S BCSSTH28

Figure 49: Parallel speedups for block approach for BOSSTR 15 and BOSSTR2Y

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION Ry

& GRiD1oo
- GRiD20o
o BCSSTK1S
+ BCSSTXK16
x BCSSTK1?
x
]

8
3
¥

BCSSTK18
BCSSTK29

Parailel speedup
H
8
T

1200

4.9

H } :] i i A 4 !
% . 17 1. [% E] X » 40 :
Processors !

Figure 50: Parallel speedups for block approach on the Stanford DASH machine

in the DASH machine. The cost of this lack of latency hiding is substantial. On 40 processors.
for example. the processors perform roughly one word of communication for every 20 Roating-point
operations for both matrices. This represents a substantial cost to the processors. sinee a word
of communication costs roughly 30 cycles while a floating-point operation costs less than 4 cveles
These communication costs do not account for the entire difference between simulated and achieved
performance. They do account for the majority of it, though.

Looking at parallel speedups across a wider range of sparse problems gives the results in Figure 51
For each data point. we report maximum speedups when using a block size of either 24 or 32 A
choice of 32 typically gave better results for fewer than 32 processors. while a block size of 24 wasx
better for 32 or more. In either case, the performance differences between the twn choices were
generally less than 10%.

For reasons discussed earlier in this section. the obtained parallel performance is relativels low.

with speedups on 40 processors ranging from 12 to 18,

Comparison with Pane]l Method

To put the results for the block-oriented method into better perspective. we now cnmpare them
to the corresponding results for a panel method. Figure 51 shows relative communication volume
Interestingly. the block approach provides few communication-volume benefits an 64 processors
While the growth rates, O(P) for panels and ()(ﬁlog P) for blocks. favar the block approach
constants make these rates less relevant for small P

An interesting thing to note here is that relative communication 1s quite a bt higher for the twe

CHAPTER 7. SPARSE BLOCK-OQFR ENTED FACTORIZATION 14y

Block commvPanel comm

109

GRID100
GRID200
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18

BCSSTK29
o i 1 i i
[0 F) “

Processors

[22 ol

O XX + 0P

Figure 51: Communication volume of block approach. relative to a panel-oriented parallel mulu-
frontal approach.

grid problems than for the other matrices. The reason is that the column multifrontal approach does
very well cornmunication-wise for sparse matrices whose elimination trees have few nodes towards
the root and instead quickly branch out into several independent subtrees. The two grid problems
have this property. The block approach derives no special benefit from this property.

Figure 52 compares block performance to panel performance. using both the DASH machine and
multiprocessor simulation. The figure shows that the block approach does indeed provide higher
performance on moderately paraliel machines than the panel approach. The simulation predicts
performance improvements of roughly 50% on 40 processors. while improvements of between 10%
and 40% percent are observed on the DASH machine. ‘We believe that the reason performanre
differences are larger in the simulation is again because communication costs are not being hidden
on the DASH machine. We previously indicated that these costs are substantial for large numbers
of processors, and we also showed that the costs were comparable for the panel and block methods
Since this large communication cost is shared between the two methods. the performance differences

between the two are decreased.

Summary

To summarize this subsection, we note that our block fan-out approach provides good performanes
for moderately-parallel machines, although parallel speedups are well below linear in the number of
processors for the matrices we have considered. An important imiting factor 1s the load balance

that results from our quite rigid cookie-cutter block distribution scheme. We also find that the block

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION BY

]
1

g o]

c 1%

<

£

3

T

]

a
123 $

E 180

©

@

Block performancesPanel padormance

100 N
e
v GRID10C
& GRID100 f\ GRiD200
3 GRID200 o BCSSTKIS
o BCSSTKi5 + BCSSTK16 =
a3~ + BCSSTK16 950 % RCSSTKi?
x BCSSTK17
= BCSSTK18
x BCSSTKi8 o BCSSTK29
o BCSSTK29)
JRP (Y T I N S TN T U N U SO NS U W G PSS IS T T TS G N SN S RS S A
4 @ 12 18 2 M B 32 I 10 M W 32 M M0 0 4 B 12 18 W U W I2 M W 4 48 352 58 80 o
Procassors Processors
DASH Simutated

Figure 52: Performance of block approach relative to performance of panel approach.

approach produces comparable amounts of interprocessor communication traffic to a panel approach
on 64 or fewer processors. Comparing the overall performance of a block approach to that of a pane
approach, we find that the block approach has a small performance advantage. The load balance
problems with the block approach are more than made up for by its better data reuse; the bhlock
approach performs virtually all computation in the form of B by B dense matrix multiplications.
whereas the panel approach is forced to use narrow panels. The performance advantage of the block
approach over the panel approach would be expected to be somewhat larger on a machine that
hides interprocessor communication latencies from the processors. On the DASH machine. since
communication volumes are comparable for both methods and the costs of such communication ar»

constderable, the differences between the methods due to other sources are diluted.

7.4.3 Massively-Parallel Machines

Having concentrated on issues of efficiency on smaller machines in the first part of this section. we
now turn our attention to three issues that will be important for very large parallel machines. First.
we look at available concurrency in the problem. In other words, we look at how many processors
can be productively used for a particular problem. Next we turn to the issue of per-processor storage
requirements. and we consider how they grow as the number of processors and the problem size 15
increased. A common assumption for large parallel machines is that each processor will contam
som: constant amount of memory. Thus. it would be desirable for the amount of storage required
per processor to remain constant. Finally. we consider interprocessor communication ssues Our

discussions will use 2-D grid problems as examples

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 14

Before further discussing these issues. we should first explain our goals The primary advantage
of a block approach over a panel approach for a massively paralle] machine s that (t exposes e
concurrency and thus allows more processors to cooperate for the same spatse problem For a k x &
2-D grid problem. for example, the column approach can be shown to allow (k) processors tr
participate. By some measures, a block approach can use O(k?) Qur goal 1s to determine whether
the use of O(k?) processors is a realistic goal. and to understand the difficulties that might be

encountered in trying to reach this goal

Concurrency

One important bound on the parallel performance of a computation is the length of the critical path
Determining the critical path in a computation requires an analysis of the dependencies between the
various tasks in that computation. Such an analysis for block-oriented sparse Cholesky factorization
reveals that the length of the critical path is proportional to the height of the elimination trer
assuming some constant block size. For a 2-D grid problem, the elimination tree can be shown to
have height 3k. Thus, in the best case the O(k3) work of the entire factorization can be performed
in O(k) time. Consequently. at most O(k?) processors can be productively applied to this problen

This figure is consistent with our goals for the block approach.

Storage

We now look at the issue of how per-processor storage requirements grow as the size of the machiue
and the size of the problem is increased. We first note the obvious fact that the processor must
store the portion of the matrix assigned to it. If the factorization is performed on P processors. and
the problem being factored is a & x & grid problem. then each processor must store O(k—i-!—;&-'fl non-
zeroes. Keeping per-processor storage requirements constant would thus require that the number
of processors grow slightly faster than k?. Since the critical path analysis showed that only O(k*]
processors can be used productively for this problem. we must resign ourselves to a siow growth rate
In per-processor storage.

Now consider the storage requirements of the auxiliary data structures that a processor must
maintain. One important set of auxiliary data is the per-block information. An example is the count
of how many times a block is modified. Another is the particular row and column of processors to
which a particular block i1s sent when complete. This data adds a small constant to the size of each
block. and consequently it represents a small constant factor increase in overall storage.

Another important set of auxiliary data is the column-wise data. One exampie is the arrival
count information, which keeps track of how many biocks in a particular block-column a processor
will receive. Since the number of block-columns in the matrix is k?. this data structure would
occupy O(k?) space per processor if every entry were kept Fortunately, only O{k3/P) of these

entries must be stored. The reason is as follows. If the factorization work is distributed evenis

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION BRI

among the processors. then the work performed per processor 15 QUk*/P). Since a recened block
is only retained in a processor if it participates in some useful work. clearly the number of such
retained blocks and thus the number of arrival counts that must be stored 1s also O/ Py We can
keep a hash table, indexed by column number. of all non-ze.o arnival counts When a block arrnives
the corresponding arrival count is located and decremented. Note that not all blocks that artive at
A processcr participate in an update on that processor If no arrival count s found for the block
column of an arriving block. then the block is immediately discarded. Sinmlar hash struetures can
be used for the other column-wise data structures.

Regarding per-processor storage growth rates, note that if P grows as k-, then the per-processor
matrix storage costs grow as O(log k) while the arrival count storage costs grows as (k3 /) = Otk
Fortunately. the O(k) term has a very small constant in front of it. so this term will not be parucularhy

constramning for practical P. However, asymptotic per-processor storage requirernents will grow with
P

Communication

A crucial determinant of performance on massively parallel machines is the bandwidth of the proces-
sor interconnection network. In order to obtain a rough feel for whether the bandwidih demands of
the block fan-out method are sustainable as the machine size increases, we look at these demands in
relation to two common upper bounds on available communication bandwidth. in a manner similar
to that used by Schreiber in {43]. The two upper bounds are based on bisection bandwidth and total
available point-to-point bandwidth in the multiprocessor. We consider a 2-D mesh machine organi-
zation, which is in some sense a worst case since it offers lower connectivity than most alternative
organizations.

A bisection bandwidth bound is obtained by breaking some set of point-to-point interconnection
links in the parailel machine to divide it into two haives. Clearly, all communication between
processors in different halves must be travel on one of the links that 1s split. The bisection bandwidth
bound simply states that the parallel runtime is at least as large as the time that would be required
for these bisection links to transmit all messages that cross the bisector.

In the case of the block fan-out method applied to a 2-D grid problem. recall that O(k? log P}
messages are sent. and each is multicast to O(v/P) processors (a row and column of processors).
Figure 53 shows an example mesh of processors, an example bisector. and the communication pat-
tern that can be used to riulticast a message. For any simple bisector, a multicast to a row and
column of processors crosses that bisector once or twice. Thus, total traffic across the bisector is
O{k*log P). This traffic must travel on one of O(v/P) communication links in the bisector, and
this communication occurs in the O(k3/P) time required for the factorization. If we assume that
rommunication is evenly distributed among the bisector links, then communication per bisector link

per unit ttme is 0(7";2‘]:5/;,,) =0 ﬁltogp)

. If P grows as k%, communication per link per unit tume

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 44

Bisector
o v:,_w-_] \ .//
A
,(:w, .
S wl,é, .
7N
yd y
7/ ™
i 7 ~
/ B
/7 \
Source

Figure 53: Communication pattern for row/column muliticast.

is thus O(log P}. Since the amount of data that can travel on a single link per unit time 1s constant.
this growth rate represents a small problem. The number of processors P must grow slightly slower
than k? in order to keep message volume per link constant.

Another common communication-based bound on parallel performance is the total amount of
traffic that appears on any link in the machine, expressed as a fraction of the total number of inks
in the machine. For our example, there are O(k” iog P) multicasts, each of which traverses (X(\V P
links. The number of links in the machine is O(P), and again this communication occurs in Q&%) P}
time. Thus, global traffic per link per time unit is O('(‘—;‘:/—/—F;—Iﬁxp—?). or O([‘D—E’&ﬁ)‘ If Pis O(k%) we
obtain Oflog P) traffic per link, which is identical to the bisector traffic.

We should note that the preceding arguments have said nothing about achieved performance
Demonstrating that certain performance levels can actually be achieved would require a detailed
analysis of the structure of the sparse matrix, the way in which the factorization tasks are mapped
to processors, and the order in which these tasks are handled by their owners. This would certainly
be a daunting task. This discussion has simply shown that the approach is not constrained away

from achieving high performance by any of the most common performance bounds.

7.4.4 Summary

To summarize our evaluation. we have found that the block fan-out method s quite appeahling
across a range of parallel machines. Overheads are low enough that the method 1s quite effective for

small parallel machines. It is also effective for moderately parallel machines, aithough performance 1n

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 45

somewhat limited by the quality of the computational load balance. For massively parallel machines
we found that the approach is not perfect. Per-processor siorage requirements grow with the number
of processors. Bisection bandwidth considerations also himut the number of processors 1o helow 1deal
However. these constraints are mild encugh that the block fan-out approach appears to be quite

practical even for very large P

7.5 Discussion

At this point 1n this chapter. it would be desirable to choose a particular parallel method as being
preferable to the other. The previous section provided some comparative information. but it did not
address several more general and more practical considerations. Let us now consider some of these
issues.

The first thing to note is that the block approach has huge asymptotic advantages over a panel
approach for larger numbers of processors. The concurrency and communication growth rates so
greatly favor the block approach that there is no question that it will eventually provide much
higher performance. We therefore concentrate on issues that will be important for moderately
parallel machines.

One important advantage of a block fan-out approach is its very regular communication pattern
Blocks are multicast to a row and column of processors. In contrast. the multifrontal panel approach
multicasts a panel to an arbitrary subset of the processors. The block communication pattern 1s
certainly easier to perform efficiently.

Another advantage of the block approach is its extremely simple and efficient computational
kernel. High performance for this method simply requires an efficient dense matrix-matrix multipli-
cation kernel.

One disadvantage of the block approach is the difficulty of balancing the computational Inad
While the panel approach did have some load balance problems. they were not nearly as severe

Another potential disadvantage of a block approach is the less natural data representation 1t
uses. Sparse matrices are decidely much easier to represent in terms of columns (or rows) of non-
zeroes. Our hope is that the data representation in the Cholesky factorization routines can be hidden
from the apphcation by encapsulating the parallel factorization as a library routine that 1s accessed
through high-level data manipulation routines. Since sparse Cholesky factorization is typically used
to solve sparse linear systems. the output of the factorization would be a vector r such that Ar =

The application would hopefully never have to access the factor matrix.

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION &5

7.6 Future Work

While this chapter has explored several practical issues related to parallel block-oriented factoriza-
tion, it also has brought up a number of questions that will require further investigation. Foremost
among these 1s the question of whether the load balance could be significantly improved. We are
currently investigating more flexible block mapping strategies.

Another interesting question concerns the choice of partitions for the 2-D decomposition. Recall
that our partitions are chosen to contain sets of contiguous columns from within the same supernod-
Ashcraft has shown [4] that by choosing columns that are not necessarily contiguous. it is often
possible to divide the sparse matrix into fewer. denser blocks. While our results indicate that the
simpler approach is quite adequate, we are currently looking into the question of how large the
benefit of a more sophisticated approach may be.

We also hope to compare the block fan-out approach we have proposed here with the block
multifrontal approach proposed by Ashcraft [4]. One thing we are certain of is that the block fan-
out method is much less complex. So far, we have not discovered any significant advantages to a
multifrontal approach, but the issue requires further study. We also hope to investigate a block
analogue of the fan-in method.

Once a matrix A has been factored into the form A = LLT, the next step is tvpically the solution
of one or more triangular systems Ly = b, where b is given. An issue that we have left unaddressed in
this chapter is the efficiency of this backsolve computation when L is represented as a set of blocks
Our belief is that this backsolve will be more efficient than the backsolve for a column representation.
but further investigation will be required to fully answer this question.

Finally, we note that sparse Cholesky factorization requires several pre-processing steps. A block-
oriented representation would require new implementations of many of these steps (particularly the
symbolic factorization). It will be interesting to see whether 1t will be possible to perform these
steps as efficiently on a parallel machine when using a biock framework as opposed to a column

framework.

7.7 Related Work and Contributions

Let us now briefly consider how our work in this chapter relates to existing work. One obvious set
of related work discusses the use of block-oriented methods for dense matrix computations. The
block fan-out method we describe is in many ways a sparse matrix analogue of the paraliel dense
destination-computes Cholesky factorization method described in [3]. However. 1t should be clear
to the reader that our method represents a non-trivial extension of this previous work. Sparse
matrices introduce a variety of complications. including i1ssues of how to decompose the matrix into
reasonable blocks, how to determine what blocks are affected by a block, and how to determine when

a processor can discard a received block. that are not present in dense methods.

e

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION kN

We should also note that we are not the first to suggest the use of a block-oriented formulation
for parallel sparse Cholesky factorizatior.. Other formulations have been suggested in {4] and 45
One crucial difference betwean our work and this other work is that we have described the details
of an extremely practical approach. This other wotk has described methods that we consider to
be too complicated to ever be practical. The other important difference between our wark and
previous work is that we have produced the first high-performance in:, -mentation. and we have
done the first detailed performance evaluation. We have demonstrated that a block representation
does not severely limit performance, that an eflicient parallel method is not all that complicated to
implement, and we have provided communication volume and achieved performance comparisons
against alternative parallel methods (panel methods). Previously, the only implementation was that
of [4]. which provided results from a relatively slow parallel machine (an iPSC/2) and provided little
comparative information.

One final contribution of our work comes from our extensive use of performance modelling to
understand the important factors affecting parallel performance. In doing so, we were able to identify
loaa balance and interprocessor communication costs as important limiting factors. and we were able

to quantify the effects of each of these factors.

7.8 Conclusions

The results of previous chapters have shown that panel methods are inappropriate for sparse
Cholesky factorization on large parallel machines. This chapter has considered the natural al-
ternative, a2 2-D or block matrix decomposition. Our focus has been on answering the question of
whether such a decomposition is truly practical. We described a parallel block algorithm that is
both practical and appealing. The primary virtues of our approach are: (1) it uses an extremely
simple decomposition strategy, in which the matrix is divided using global horizontal and vertical
partitions; {2) it is straightforward to implement; (3) it is extremely efficient, performing the vast
majority of its work within dense matrix-matrix multiplication operations; (4) it is efficient across
a wide range of machine sizes, providing comparable performance to that of efficient panel methods

on small parallel machines and better performance on larger machines.

Chapter 8

Conclusions

Machines organizations are continually evolving. Algorithms must evolve as well to make good use
of these machines. This thesis has looked at sequential and parallel sparse Cholesky factorization
on machines with hierarchical memory organizations, a machine organization that is becoming more
and more important.

On sequential machines with a hierarchy of caches and main memory, it is important to reuse data
in the fzster levels of this hierarchy to avoid the long latencies of cache misses. This thesis performed
a careful examination of the performance of three important approaches to the computation. left-
looking, right-looking, and multifrontal. Our work is the first to evaluate all these methods in a
consistent framework. We showed that each could achieve significant data reuse by exploiting the
supernodal structure of the sparse factor. The performance of the methods benefited greatly from
such reuse. Roughly three-fold performance improvements were observed for two modern sequential
machines on which the evaluations were performed. We also found that when these methods were
expressed in terms of supernodes, the performance differences between them eflectively disappeared.
Conventional wisdom had previously been that the methods were quite dissimilar.

On parallel machines, data reuse is even more crucial. Processors must reuse data not only to
avoid the latencies of cache misses, but also to avoid saturation of shared resources, including shared
memory modules and the processor interconnection network. We proposed a panel multifrontal
method that achieves data reuse by distributing sets of adjacent columns (panels) among processors.
We showed that this approach provides two to three times the performance of the existing column
multifrontal method, thus demonstrating that our method is quite valuable for improving parallel
performance. However, we also found that the method provides relatively low parallel speedups
on latger machines. Using performance modelling and parallel machine simulation, we performed
the first detailed investigation of the reasons for achieved performance. We demonstrated that
this low performance was quite easily understood in terms of simple upper bounds on realizable

performance. These methods do not expose sufficient concurrency in sparse factorization problems

148

CHAPTER 8. CONCLUSIONS B

and they produce too much interprocessor communication volume.

T - overcome these problems, we proposed a sparse factorization method that distributes rectan
gular sub-blocks of the sparse matrix among processors. W hile such an approach has the potential
to be much more complicated than a column approach. the specific method we propose is actually
quite simple. It uses an extremely straightforward matrix decomposition. it performs very regular
interprocessor communication. and processors maintain simple data structures to determine how 1o
act on received blocks. We demonstrated that this block method has large asymptotic advantages
over panel methods for large parallel machines. both in problem concurrency and in irterproces-
sor communication volume. By presenting performance results from the first high-performaiice
block implementatioi, we also showed that this approach provides higher performance than panel
methods even on moderately parallel machines, thus demonstrating that the block method can be
implemented efficiently.

Obtaining high performance for the sparse Cholesky factorization computation has historically
proven to be an extremely difficult problem, with the only real successes coming from expensive
vector supercomputers. This thesis has demonstrated that much less expensive machines, sequential
and parallel machines with hierarchical memory organizations, can and do provide high perfor-
mance If the computation is blocked for the memory hierarchy. This thesis has provided a detailed
investigation of the crucial issues for performing this blocking.

Regarding future work. one obvious area for future #xploration would be the creation of a scalable
library for parallel sparse Cholesky factorization. We believe our work on block-oriented factorization
could form the foundation for a ‘black box’ method that provides good performance on a wide range
of parallel machines. One potentially challenging issue for such a library would be the design of the
interface between the application program and the sparse system solver. The interface would have
to be general enough so that it could be used by a wide range of application programs. It would
also have to be high-level enough so that the application program would not have to be intimately
familiar with the data representation and data placement done inside the library. At the same time.
it would also have to be efficient enough so that passing the matrix between the application and the
parallel library would not become the bottieneck in the factorization.

Another potentially interesting area for future work would be an investigation of the use of
similar blocking techniques for cther sparse matrix methods, such as sparse QR and sparse LU
factorization. While the techniques developed in this thesis would not be directly applicable to
other sparse problems, it may be possible to apply them with minor modifications to obtain similar
benefits.

Another interesting topic is the question of how our work on sparse Cholesky factorization would
apply to preconditioned iterative methods that rely on some form of Cholesky factorization fcr
their preconditioning. Important examples include block diagonal factorization and incomplete

Cholesky factorization in the conjugate gradient method. It would be interesting to consider the

CHAPTER 8. CONCLUSIONS 150

tradeoff between the work required to perform the partial Cholesky factorization. the efficiency of
the resulting computation, and the numover of iterations the iterative method requires to convergs
Finally. it would be interesting to consider in more detail the implications of our results for an
extremely important application. sparse Cholesky factorization. on the design of computer architec-
tures, particularly parallel machine architectures. Machines should certainly be built with an eye
toward providing high performance on real programs. Important questions to be answered are How
much memory should each processor have” How many procsessors can share a single memory” How
much interprocessor commun‘cation bandwidth should be provided? How large a disparity between
processor and memory speeds can be tolerated? Qur work on sparse Cholesky can provide important

insights for designing the next generation of paraliel machines

<o

Bibliography

1]

Amestoy. P.R., and Duff, [.§.. “Vectorization of a multiprocessor multifrontal code™. futerna.

tional Journal of Supercomputer Applications. 3:41-59. 1034,

Anderson. E., Bai, Z.. Bischof. C., Demmel, J.. Dongarra, J . Du Croz. J Greenbaum. A
Hammarling, S., McKenney. A.. and Sorensen, D., "LAPACK. A portable hinear algebra hibrary

for high-performance computers”™. Proceedings of Supercompuling ‘90, November, 1990

Anderson, E.. Benzoni, J.. Dongarra. J.. Moulton, S.. Ostrouchov. S.. Tourancheau. B . and
van de Geyn. R.. “LAPACK for distributed memory architectures: progress report”™. Parallel
Processing for Scientific Computing, Fifth SIAM Conference. 199).

Ashcraft, C.C., The domain/segment partition for the factorization of sparse symmelric postlive

definite matrices, Boeing Computer Services Technical Report ECA-TR-14% November. 1940

Ashcraft, C.C., The fan-both family of column-based distributed Cholesky factorization algo-

rithms, in Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithms
1992.

Ashcraft, C.C., A tazonomy of distributed dense LI’ factorization methods. Boeing (Computer
Services Technical Report ECA-TR-161, March, 1991,

Ashcraft, C.C., A vector implementation of the mullifrontal method for large sparse symmetric

posttive definite linear systems. Boeing Computer Services Technical Report ETA-TR-51. May
1987.

Ashcraft, C.C., Eisenstat, 5.C.. and Liu. J., “A fan-in algorithm for distributed sparse numernical

factorization”, SIAM Journal on Scienlific and Stalsstical Computing, 11{3):593-599. 1800,

Ashcraft, C.('., Eisenstat, S.C.., Lwu, J.L.. and Sherman. A H. 4 comparison of three rolumn.
based distributed sparse faclorizalion schemes. Research Report YALEU/DCS/RR-%1 Com

puter Science Department. Yale University, 1990,

BIBLIOGRAPHY Iz

{10] Asheraft, C.C.. and Grimes, R (i, “The ifluence of relaxed supernode partitions o the mual-

tifrontal method™ . ACM Transactions on Mathematieal Noftware, 15.291-309. 19584

[11] Asheraft. C C.. Grimes, R.G., Lewis, J.G.. Peyton. BW and Simon. H D "Reernit progrens
in sparse matrix methods for large linear systems”. Interrational Journal of Nuperrompur-
Applications, 1(4): 10-30. 1987

(12] Carr. S.. and Kennedy. K., "Compiler blockability of numerical algorithins™. Proceedings of

Supercomputing ‘92, November, 1§92

(13} Davis. H.. Goldschmidt, S., and Hennessy, J.. "Multiprocessing simulation and tracing using

Tango™. Proceedings of the 1991 Internctional Conference on Parallel Processing. August. 194}

{14] Dongarra, J.. Du Croz. J., Hammarling. S.. and Duff. 1., “A set of level 3 basic linear algebra
subprograms™. ACM Transactions on Mathematical Software. 16(1) 1-17. 1990

{15] Dongarra, J.J., and Eisenstat, S C.. “Squeezing the most out of an algorithm in 'RAY FOR-
TRAN", ACM Transactions on Mathematical Software. 10(3}): 219-230, 1984

[16] Duff. 1.S., Grimes. R.G.. and Lewis, J .G., “Sparse Matrix Test Problems”, ACM Transactions
on Mathematical Software, 15(1): 1-14, 1989.

(17) Duff. LS., Reid, J.K.. “The multifrontal solution of indefinite sparse symmetric linear »qua-
tions”. ACM Transactions on Mathematical Software, 9(3): 302-325. 1983.

[18] Fox, G., et al, Solving Problems on Concurrent Processors: Volume 1 - General Techniques and
Reguiar Problems, Prentice Hall, [988.

[19] Gallivan, K., Jalby, W., Meier, U.. and Sameh, A., “Impact of hierarchical memory systems o
linear algebra algorithm design™, /nternational Journal of Supercomputer Applications. 2.12-4x.
1988.

[20] Geist. G.A., and Ng, E., A partitioning strategy for parailel sparse Cholesky factortzation. Tech-
nical Report TM-10937, Oak Ridge National Laboratory, 1988

{21] George, A., Heath, M., Liu, J., and Ng, E., Solution of sparse positive definite systems on a
hypercube, Technical Report TM-10865, Oak Ridge National Laboratory, 1988.

(22] George. A., Heath, M.. Liu, J. and Ng, E., “Sparse Cholesky factorization on a local-mermary
multiprocessor”, SIAM Journal on Scienlafic and Statistical Computing’, 9:327-340. 1988

[23] George, A, and Liu, J., Computer Solution of Large Sparse Positive Definite Systems. Prenticr-
Hall, 1981.

BIBLIOGRAPHY 154

{24] George, A.. Liu. J. and Ng, E.. "Commumcation results for parallel sparse Cholesky factoniza-

tion on a hypercube”, Parallel Computing. 10: 287-298. {989

[25] George, A.. Liu. J.. and Ng. E.. User’s guide for SPARSPAK. Waterloo spurse hinear vquations
package. Research Report U'S-78.30

{26] Lam. M.. Rothberg. E.. and Wolf, M.. “The Cache Performance aad Optuinuzations of Blocked
Algorithms”, Proceedings of the Fourth [nternational Conference on Architectural Support for

Programming Lenguages and Operating Systems. April. 1991,

[27] Lenoski, D., Laudon. J., Gharachorloo, K., Weber, Wolf-Dietrich. Gupta, A Hennessy. J
Horowitz, M., and Lam, M.. “The Stanford DASH multiprocessor™. [EEE (omputer. 23{3} 63-
79. March, 1992

[28] Lenoski. D., Laudon, J., Joe. T., Nakahira. D., Stevens. L.. Gupta. A., and Hennessy. J.. "The
DASH prototype: logic overhead and performance”. to appear in [EEE Transactions on Parallel
and Distribuled Systems, 1992.

[29] Lewis, J., Peyton, B., and Pothen. A.. “A fast algorithm for re-ordering sparse matrices for
parallel factorization”, SIAM Journal on Scientific and Statistical Compuling. 10: 1146-1173.
1989.

[30] Liu. J., “Modification of the minimum degree algorithm by multiple elimination™. ACM Trans-
actions on Mathematical Software, 12(2): 127-148. 1986.

(31} Liu, J., “The multifrontal method and paging in sparse Cholesky factorization™, ACM Trans-
actions on Mathematical Software, 15(4): 310-325, 1989.

(32] Liu. J., “On the storage requirement of the out-of-core multifrontal method for sparse factor-
ization”, ACM Transactions on Mathematical Software, 12(4), 1987.

(33] Liu, J., “Reordering sparse matrices for parallel elimination”, Paralle! Computing, 11(1): 73-91.
1989.

[34] Lucas, R. Solving planar systems of equations of distributed-memory multsprocessors, PhD the-
sis, Stanford University, 1988

[35] Mowry, T., and Gupta, A., “Tolerating latency through software-controlled prefetching n

shared-memory multiprocessors”, Journal of Parallel and Distributed Computing, June. 1591

[36] Ng, E.G., and Peyton, B.W., A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors, Technical Report ORNL/TM-11814. Oak Ridge National Laboratory. Apnl.
1991.

BIBLIOGRAPHY 104

37)

[40)

[41]

(46)

[47)

Pothen, A., and Sun. C., A distributed multifrontal algorithm using chigque trees Cornell Theors
Center Report CTCI91TR72, Cornell Umversity, August. 1991

Rothberg. E.. and Gupta. A.. “Efficient Sparse Matrix Factorization on Hierarchical Mem-
ory Workstations — Exploiting the Memory Hietarchy”. ACM Transactions on Mathematical
Software, 17(2):313-334, 1991.

Rothberg, E., and Gupta. A.. An evaluation of left-looking, right-locking. and multsfrontal 1p-
proaches to sparse Cholesky factorization on hierarchical-memory machines. Technical Repurt
STAN-CS-91-1377, Stanford Untversity, 1991. Accepted for publication in the Internation faur-
nal of High-Speed Computing.

Rothbeig, E.. and Gupta, A., “Techniques for improving the performance of sparse matrix
factorization on multiprocessor workstations™. Proceedings of Supercomputing 90, p. 232-243
November, 1990.

Rothberg, E., Gupta. A., Ng, E., and Peyton. B., "Parallel sparse Cholesky factorization algo-
rithms for shared-memory multiprocessor systems”, Proceedings of the Seventh IMACS Inter-

nalional Conference on Computer Methods for Partial Dafferential Equations. 1992

Schreiber, R., “A new implementation of sparse Gaussian elimination”, ACM Transactions on
Mathematical Software, 8:256-276, 1982.

Schreiber, R., “Are sparse matrices poisonous to highly parallel machines?”. in Workshop on

Sparse Matrix Computations: Graph Theory Issues and Algorithms, 1992.

van de Geijn, R., Massively parallel LINPACK benchmark on the Intel Touchstone Delta and
1PSC/860 systems, Technical Report CS-91-28, University of Texas at Austin. August, 1991

Venugopal, S., and Naik, V.K.. “Effects of partitioning and scheduling sparse matrix factor-

1zation on communication and load balance”, Proceedings of Supercomputing 91, November.
1991.

von Eicken, T., Culler, D., Goldstein, S., and Schauser, K., “Active messages: a mechanism for
integrated communication and computation”, Proceedings of the 19th International Symposium

on Computer Architecture, May, 1992.

Wolf. M., and Lam, M., “A data locality optimizing algorithm”, Proceedings of the 1991 SI(;-

PLAN Conference on Programming Language Design and Implementation. June, 1991

